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1 Introduction

About this Book

This book is a companion to Psychology 3950 (Research Methods and
Statistics Ill) at Grenfell Campus, Memorial University. Additionally, this
book may serve to support Grenfell Honours students when completing
their relative analysis. While most example analysis are done using R
many of the key concepts are applicable to SPSS, JASP, or SAS. PSYC
3950 students can refer back to the three lab workbooks for additional
support conducting these analyses in SPSS. Additional, non-R resources
may be added at a later date. This book is a working document. | will
make adjustments, add content, or fix errors as needed. This book is free
to use. While you do not require permission, | ask you appropriately cite
this document:

I

Pritchard, T. R. (2025). Insights and analyses: A course companion (2nd
edition). https://insightsandanalyses.netlify.app/

Additional Resources

Additional resources for this book may be found at: https://
tylerpritchard/netlify/app/insightsandanalyses

Report errors, recommendations, or concerns to tpritchard@mun.ca.
About the Course

From the university calendar:

PSYC 3950 Research Methods and Data Analysis in Psychology Il
will cover advanced research methods, including survey methods,
and supporting statistical concepts and techniques. Designs will
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include single factor designs and multi-factor designs with both ran-
dom and fixed factors. Supporting statistical concepts will include
analysis of variance (ANOVA) from a linear model perspective,
statistical power, and multiple regression, including model building.
There may be a general introduction to multivariate statistical tech-
niques. Ethical issues in research will be discussed in detail. Students
will be required to design and carry out at least one research project
from the design to the writeup stage, including an ethics review.

— Grenfell Calendar

About Dr. Pritchard

Dr. Pritchard is currently a TTA at Memorial University (Grenfell Campus)
and director of the Suicide and Health-Related Outcomes in Rural Envi-
ronments (SHORE) Lab. Please visit the SHORE Lab website for more

information.

So Tyler doesn't forget and for your own knowledge. The following color
palette may look nice!

e Deep Pine Green (#2F4F4F)
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2 The Scientific Method

This chapter will provide a foundation for chapters to come. It introduces
the scientific process, from theory to dissemination.

However, we must acknowledge that there are many ways to conduct
science. Indeed, Kuhn (1962) detailed the existence of scientific para-
digms—-widely accepts models on how to ‘science’. Without veering into
philosophy of science, please recognize that this books depicts one such
paradigm-albeit a popular one in psychology.

© Think about it. How do we gain knowledge?
Imagine the following:

® Your grandfather says that ‘kids these days spend too much time
on the internet.’

e An X (formerly, Twitter) user posts that “teens are becoming
dumber and sadder because of excess social media use.”

e A peer-reviewed scientific article suggests potential small positive
effects of social media use on depressive symptoms.

Who would you trust more? What impacts this decision? How does
your own biases impact your decision? What would you suggest to
someone asking for advice on monitoring their social media use?

We all have biases, flaws, and are prone to making errors. There were
likely numerous times where you and a friend, partner, or family member
disagreed about a situation-you saw things differently. As you have
learned in other classes, our minds use heuristics to ease the cognitive
load of having to process vast amounts of information. While it can speed
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things along for us and do a reasonably effective job in navigating our
complex world, it can sometimes lead us astray.

As an example, consider someone with a cognitive bias to interpret
their friends’ actions in a negative way-as if often seen in those with
depression. The person may text a friend asking to “hang out tonight?”.
The person could interpret the lack of response many ways such as 1)
the friend is busy doing something else, 2) the friend’s phone has died,
3) the ‘friend’ actually doesn’t like them. In reality, the friend is at a family
event and forgot their phone at home. Unfortunately for the person in
this example, they conclude that option 3 is correct, without a doubt.
In fact, this person always believes that they annoy their friends or are a
burden to others. Importantly, these thoughts may not be grounded in
‘reality’; the friends may perfectly enjoy the company of the individual
in question. While this example may feel extreme, we all exhibit some
cognitive biases to some degree in our lives.

As scientists, it's imperative to reflect on our biases and how that may
impact how we collect and interpret information, and draw conclusions
based on the information. Some researchers implement specific meth-
ods primarily to counter their potential biases (e.g., experimenter bias)
(Strickland & Suben, 2012) and arrive at some ‘truth’. Others draw on
these biases in a reflexive manner, acknowledging that one can never
completely separate from their own experiences and biases, and use this
to strengthen their understanding of complex topics (e.g., reflexive the-
matic analysis) (Braun & Clarke, 2019). Although there are many ‘ways'
to do science, they typically use a systematic approach to generating
an argument or idea, and then planning and implementing a method to
test the verisimilitude (i.e., truthfulness) of the idea. For the purposes of
this course, we will adhere to a commonly employed scientific method
in psychology. Namely, null hypothesis significance testing. Very briefly,
our research process will consist of:

1. Generating hypotheses
2. Designing a study

3. Collecting data

4. Analyzing data

15



5. Disseminating results

@ Think about it. Can we be bias free?

* What parts of psychology most interest you? Clinical, developmen-
tal, social, cognitive, etc.?

¢ Why do you want to study a specific topic in psychology?

e How does your background and, potential, biases impact this
decision?

* How might these biases impact how we view a topic? For example,
how does a view that ‘all suicides can and should be prevented’

impact how someone studies suicide?

2.1 Generating Hypotheses

Before we continue, its important to distinguish some common terms
used in psychological research.

2.1.1 Theory

Quite broadly, we start with a theory. A theory is a set of ideas or
statements that explain how phenomena-things you observe in the
world-work. You encounter theories and apply them all the time. When
you throw a ball to your friend, you do so with with an understanding
that the Earth is bending space time and will cause the ball to accelerate
downwards (i.e., gravity and theory of general relativity). When you go
to the grocery store, you believe that you and the other customers are
generally good people who have rights and responsibilities that they will
abide by (i.e., social contract theory).

Formally, you have encounter many psychological theories in your
students. For example, do these names ring a bell? Pavlov (theory of
learning)? Eriksson (psychosocial theory)? Piaget (theory of cognitive
development)? Freud (psychoanalytic theory)? Greenberg (terror man-
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agement theory)? Deci and Ryan (self-determination theory)? | could
go on (and on)! One commonality of the theories developed by these
individuals is that they propose an explanation for some facet of psycho-
logical functioning. Do we need so many theories?

© Definition

A theory is a set of ideas or statements that explain how phenom-
ena-things you observe in the world-work.

There are myriad theories in psychology. In fact, theoretical pluralism is
often viewed as a strength and necessity in our field. Human behavior
is so complex that we need a diverse set of theories to explain different
behaviors in different contexts. Some of the psychological theories seek
to explain a specific component of psychology. For example, consider a
theory seeking to explain suicide: the interpersonal psychological theory
of suicide (Van Orden et al., 2010). Other theories may explain human
behavior more broadly such as theories of learning.

Furthermore, sometimes theories contradict each other in their explana-
tions. For example, one study may propose that suicide is caused solely
by X, but another solely by Y. This marks the importance of research to
elucidate which theory best reflect real world phenomenon.

Regardless, let's return to the interpersonal theory of suicide. The fol-
lowing set of statements may be derived from the theory:

© Theory Example

Theory: Feeling like a burden is detrimental and indicates that the
person perceives that they take more from relationships than they
provide. Thinking about killing oneself (i.e., suicidal ideations) will oc-
cur when one believes that they are a burden to others. Importantly,
the perception of being a burden is more important than whether
that person is actually a burden.

17



2.1.2 Hypotheses

From a theory, we can derive a hypothesis (or the plural, hypotheses)-
a specific statement or prediction about something that will happen
When we throw the ball up in the air, we predict it will come down. When
we are shopping for groceries, we predict that we won’t be assaulted or
robbed, and that all customers will pay for their goods.

O Definition

A hypotheses is a specific statement that predicts something that
will happen.

Going back to our theory of suicide, we can derive a hypothesis:

© Hypothesis Example

Hypothesis: individuals who are induced with thoughts of burden-
someness (z) will have more thoughts of suicide (y) than those who
are not induced thoughts of burdensomeness.

Thus:
T =y
or more specifically:

Burdensomeness — SuicidalT houghts

Why care about hypotheses? Hypotheses are foundational designing
research studies.

2.1.3 What makes a quality hypothesis?

Not all hypotheses are equal. Although not an exhaustive list, there
are several features of higher quality hypotheses. Typically, high quality
hypothesis are testable, falsifiable, clear and precise, simple, and derived
from relevant theory or observations. Let's explore these in detail.
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2.1.3.0.1 1. Testable

A good hypothesis can be tested empirically. That is, you can design an
experiment that can feasibly collect the data required to test it. Consid-
ering the example hypothesis above using the interpersonal theory of
suicide, are we able to design a study to test it?

We could randomly assign people to one of two groups: one group is
provided (false) information that indicate their family and friends believe
that they are a burden. The other is provided more neutral information
about their family and friends’ beliefs about them. Then, we can measure
people’s suicidal ideation levels after receiving that information. What
should we observe based on the above hypothesis?

O Think about it.

What results would you expect based on the hypothesis?

While this study is technically possible, it would not be ethically possible.
Ethically, we cannot try to psychologically or physically harm people-
definitely not with the goal of inducing suicidal ideations. The research
method we use to test a hypothesis must be both practical and ethical.

© Think about it.

How could we design a study to ethically test the above hypothesis?

Instead, in our suicide example we may seek out two naturally occurring
groups: one of individuals who already perceive themselves as a burden
to others and another who do not. We could then measure and compare
their suicidal ideations.

2.1.3.0.2 2. Falsifiability

A good hypothesis (and theory) able to be proven false; they are falsi-
fiable. As a simple example, imagine we predict that x causes y. If we
conduct a study and the results are that xz occurs, but y does not, we
have logical evidence that our hypothesis is false.
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Indeed, Popper (1959) proposed that a scientist’s goal should be to
prove their theories false. Said another way, if we are advocates of truth
through science then we should bravely try to prove ourselves wrong-a
scary proposition. However, consider two possible research findings and
their implications. The first is that our hypothesis is not supported by
our research finding and that, as a result, our theories are wrong. In this
case, we must discard or revise our theory. This is progress! The second
is that our hypothesis is supported by our research finding and that, as
a result, our theories may be correct. In this case, we must continue
to try to prove our self wrong. The more we can’t prove ourselves
wrong, the more evidence that our ideas are correct. Indeed, it takes
courage to try to prove yourself wrong. As humans we like to be right.
However, many great thinkers and scientists have approached science
with a ‘prove myself wrong’ mindset. When describing Einstein’s theory,
Popper (1959) writes about the risky nature of Einstein’s experiments:

Now the impressive thing about this case is the risk involved in a
prediction of this kind. If observation shows that the predicted effect
is definitely absent, then the theory is simply refuted.

— [Popper]

2.1.3.0.3 3. Clarity and Precision

A good hypothesis has clear and precise definitions. Researchers must
clearly operationally define the variables of interest. Researchers need
to clearly and concretely explain how they conceptualize and measure a
construct/variable of interest. For example, what do we mean by ‘suicidal
ideations’ or ‘believing they are a burden to others'? Researchers must
precisely explain how they plan to measure the variables included in a
hypothesis.

Per the American Psychological Association, an operational definition is:

a description of something in terms of the operations (procedures,
actions, or processes) by which it could be observed and measured.
For example, the operational definition of anxiety could be in terms
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of a test score, withdrawal from a situation, or activation of the
sympathetic nervous system. The process of creating an operational
definition is known as operationalizationThis is a quote.

— APA, 2018

Furthermore, the proposed relationships between variables should be
clear. Consider the relationships between z and y. Do we expect a pos-
itive relationship, wherein higher scores on x are associated with higher
scores on y? Or a negative a relationship, where higher scores on x are
associated with lower scores on y?

One major goal of clarity and precision is to allow others to know exactly
what constructs we are testing and the patterns we expect to observe
in the data. A second major goal is that it allow others to attempt to
replicate our findings.

2.1.3.0.4 4. Simplicity

A good hypothesis is as simple as needed, but no more. Thus,
hypotheses should offer the simplest explanation possible that does not
oversimplify the complexity of humans. Sometimes oversimplification
(i.e., incorrectly proposing that a complex phenomenon is cause by
something simple) occurs in psychological theories. sometimes this is
because psychological theories are, by definition, psycho-centric and
may neglect the biological, physiological, socio-cultural, and systemic
factors that impact our cognition, affect, and behavior.

As a historical example, consider Watson (1913) who rejected the rele-
vance of consciousness on understanding human learning and, rather,
that behaviorism and conditioning were all that psychologists needed to
consider. Per Watson (1913), “The time seems to have come when psy-
chology must discard all reference to consciousness.” We now know that
myriad other factors beyond behaviorism impact learning and behavior.

2.1.3.0.5 5. Theory-derived

The last feature of a good hypothesis is that it is grounded in theory
or empirical observations. It is useful to review the literature to gauge
what is already known about the topic of interest and current state of
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knowledge. It's would likely not be a good feeling or use of your time
to think of a great research idea and begin to plan a study, only to
find out that the idea has already been studied with unfavorable results.
Note: replications are important and will be discussed later. Regardless,
do your background homework. Before coming up with a hypothesis,
you must review the literature to determine what we know and what we
don’t-the latter is where you come in, ambitious scholar!

2.1.3.1 Statistical Hypotheses

Translating a word-based hypothesis into a statistical hypothesis is a
critical step in psychological research, as it allows researchers to formally
test their predictions using statistical analyses. A word-based hypothe-
sis, or a conceptual hypothesis, is often a statement that predicts a
relationship between two or more variables. For example, a researcher
might hypothesize that “higher levels of social support reduce the risk
of being diagnosed with depression one year later.” Or, as another ex-
ample, consider the following hypothesis from a former honours student
from studying various forms of connectedness and their relationship
to suicidal ideations. Each construct was operationally defined and the
relationships was specified:

All forms of connectedness will be uniquely and negatively associated
with suicidal ideations.

While both examples of conceptualized hypotheses are clear and mean-
ingful in everyday language, they would need to be translated into a
form that you can take your subsequent numbers and data, and get a
numerical response-was the hypothesis supported?

O Definition

A conceptual hypothesis is often a statement that predicts a
relationship between two or more variables.

The are many ways to translate a conceptual hypothesis into a statistical
hypothesis. Here is one common method. We will use another example
of a researcher who is interested in the links between social support and
depression.
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The first step is to ensure you have an adequate conceptual hypothe-
sis. Have you expressed it as testable prediction? For example, the
researcher may write that “Students with higher social support will
report lower levels of depression.” The second step is to operationally
define the variables. The researcher has two variables: social support and
depression. The researcher may operationally define them as:

1. Social support
e Definition: perceptions of help received from others. Types include
tangible support (e.g., providing transportation), emotional sup-
port (e.g., listening empathically), and informational support (e.g.,
providing advice).
® Measurement: Received Support Scale (Krause & Borawski-Clark,
1995)
2. Depression
e Definition: an array of cognitive, emotional, and behavioral symp-
toms marked by negative emotions and lack of engagement and
enjoyment in activities.
® Measurement: Score on Beck Depression Inventory (BDI) (Beck et
al., 1996)

The third step is to determine the appropriate statistical test based
on the operationalization of the variables of interest and the proposed
relationships/effects of the conceptual hypothesis. Many chapters in this
book are dedicated to a specific analysis that can be used to test various
hypotheses. In the example above, the researcher would propose using
a correlation or regression analysis. The fourth and last step is to express
your statistical hypothesis. In this book we will primarily express these
as the null (H,) and alternative (H,) hypotheses (more to come). Our
researcher may express:

HO:pZO
AND

Where p represents the population correlation between social support
and depression.
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This process of translating a conceptual hypothesis into a statistical
hypothesis allows researchers to test their ideas statistical using the
collected data. Additionally, it ensures that psychological research is
grounded in empirical evidence and provides clear criteria for evaluating
the validity and reliability of their findings. Statistical hypotheses will help
with designing our studly.

2.2 Designing a Study

After we have developed a suitable hypothesis, we can begin to plan
out our study. Essentially, we want to develop the methods to test the
hypotheses.

Researchers outline a proposed research plan that typically includes
details about the 1) participants, 2) measures , 3) and procedure of a
study. The Method section, which usually depicts these three key areas
of a study, is essential for explaining how the study was conducted and
ensuring it can be replicated.

It typically begins with a Participants subsection. Here, a description
of the participants, including relevant demographic details such as age,
gender, and ethnicity. The sample size is justified, typically using some
form of a power analysis (see a later chapter). Additionally, any inclusion
and exclusion criteria used to select participants are detailed (e.g., “we
excluded individuals with a diagnosed mental disorder because...”). The
participants section also describes how participants were recruited (e.g.,
through advertisements, schools, or online platforms) and whether any
compensation was provided.

The following is a participants section from a former honours student:
Sample Size Determination

A power analysis was conducted using previously established effect
sizes. Specifically, the lower limit of confidence intervals of existing
effect sizes marking the association between pain and suicidal ideations,
hopelessness and suicidal ideations, and connectedness and suicidal
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ideations were used. When confidence intervals were not presented,
halving the effect size was used to account for publication bias. The
resulting analysis indicated that a total of 75 participants were needed
to achieve a power of .80.

Participants

A total of 100 individuals clicked the survey link. However, data from
42 of these individuals were excluded from the study because they
failed to complete the survey in full, resulting in missing data. Thus, the
current study included a total of 58 participants who were members of
the general public. Participants were required to be at least 19 years
of age or a university/college student (i.e., mature minor), and fluent
in English. All participants who did not meet these requirements were
excluded from the study. Participants’ ages ranged from 18 to 53 years
(M = 24, SD = 9.76). Five (8%) participants were men, 44 (76%) were
women, nine were non-binary or preferred to not answer (16%). Forty-
three participants were White (74%), 17 were Indigenous (29%), and
six (9%) were individuals who identified as other minorities or preferred
to not answer. Due to these low frequencies and to ensure anonymity,
race and ethnicity demographic information for these individuals are not
reported.

Next is the Materials section. This is sometimes referred to as the
Measures section. Here the materials and measures used in the study
are outlined. This includes any tools or equipment used such as comput-
ers or specialized software. Additionally, descriptions of questionnaires,
surveys, or psychological tests used to collect data are included here,
along with details about their psychometric properties (e.g., reliability
and validity). If the study involves specific stimuli (e.g., images, sounds,
or videos), these are described as well. For example, if the study included
pre-recorded videos showing someone in a fake therapy session, they
would be described in detail. Additionally, measures can be provided as
supplementary material (i.e., people reading your work can easily access
the materials, unless there are some copyright or ethical concerns).

The following is a measures section from a former honours student (note
that the appendices were in her thesis and are not in this book):
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Measures

Demographics. A questionnaire was constructed to collect demographic
information. Participants were asked standard demographic questions
including age, race/ethnicity, and gender identity. See Appendix A for a
full list of demographic questions.

Suicidal Ideation. The Depressive Symptom Index Suicidality Subscale
(DSI-SS; Metalsky & Joiner, 1997) was used to measure suicidal ideation.
The DSI-SS is free to use without asking for permission. The DSI-SS is
a 4-item self-report questionnaire used to measure the frequency and
intensity of suicidal ideations within the past two weeks. Items were
rated on a scale ranging from O to 3 with higher scores indicating greater
intensity of suicidal ideation. For example, participants were asked about
the intensity of their suicidal ideations on a scale ranging from 0 (I am
not having impulses to kill myself) to 3 (in all situations | have impulses
to kill myself). Joiner et al. (2002) suggested the DSI-SS was a valid and
reliable measure of suicidal ideations with a Cronbach’s alpha coefficient
of 0.90. The reliability of the current data is acceptable (Cronbach’s alpha
= 0.92). See Appendix B for the DSI-SS.

Connectedness. The Watts Connectedness Scale (WCS; Watts et al.,
2022) was used to measure various types of connectedness. Permission
to use the WCS for this study was obtained (see Appendix C). The WCS
is a 19-item self-report questionnaire used to measure connectedness
with three subtypes: connectedness to self, connectedness to others,
and connectedness to the world, within the past two weeks. Items
were rated on a visual analogue scale ranging from 0 (not at all) to
100 (entirely). Watts et al. (2022) suggested the WCS was a valid and
reliable measure of connectedness. The reliability of the current data is
acceptable (Cronbach’s alpha = 0.89). See Appendix D for the WCS.

Pain. The Psychache Scale (Holden et al., 2001) was used to measure
pain. Permission to use the Psychache Scale for this study was obtained
(see Appendix E). The Psychache Scale is a 13-item self-report question-
naire used to measure psychological pain referred to as psychache. ltems
were rated on a 5-point Likert-scale ranging from either 1 (never) to 5
(always) or from 1 (strongly disagree) to 5 (strongly agree). Holden et
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al. (2001) suggested that the Psychache Scale was a valid and reliable
measure of psychological pain. The reliability of the current data is
acceptable (Cronbach’s alpha = 0.93). See Appendix F for the Psychache
Scale.

Hopelessness. The General Hopelessness Scale (GHS; Drinkwater et al.,
2023) was used to measure hopelessness. Permission to use the GHS for
this study was obtained (see Appendix G). The GHS is a 22-item self-
report questionnaire used to measure hopelessness. Items were rated
on a 7-point Likert-scale ranging from 1 (strongly disagree) to 7 (strongly
agree). Drinkwater et al. (2023) suggested that the GHS was a valid and
reliable measure of hopelessness. The reliability of the current data is
acceptable (Cronbach’s alpha = 0.78). See Appendix H for the GHS scale.

Next is the Procedure section. Here, the complete procedure of the
study is detailed, which offers a step-by-step account of what partici-
pants did during the study. This includes the instructions they received,
the tasks they performed, and any experimental conditions they were
assigned to (e.g., control or experimental groups). The procedure also
details how participants were assigned to these conditions (e.g., random
assignment) and the duration of each session. If deception was used, a
description of the debriefing process is included.

The following is a procedure section from a former honours student:

Procedure An online questionnaire was constructed using Qualtrics to
measure pain, hopelessness, various types of connectedness, and suici-
dal ideations. The questionnaire was a self-report measure that included
questions derived from a variety of scales. Participants were recruited
using posters displayed around Grenfell Campus, as well as an online
advertisement that was shared on [STUDENT'S] social media pages, the
Grenfell Psychology Participant pool website, and the psychology major/
minors page on Brightspace. Posters included information about how
the study will examine the relationship between suicidal ideations and
various types of connectedness. Participation in the study was voluntary
and anonymous. A QR code and link to access the online questionnaire
was also included in the poster.
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Once the study QR code was scanned or link was accessed, an online
informed consent form was provided to participants to be completed
prior to the distribution of the questionnaire. This form indicated who
the researchers are, the purpose of the study, what tasks are required,
how long it will take, potential risks and benefits, anonymity and
confidentiality of participants and data, the right to withdrawal, and
researcher contact information. After the online informed consent form
was reviewed, participants provided consent to participate by clicking
a button that stated, ‘l consent to participate in this study.” Participants
who did not consent could close their web browser. After clicking this
button, participants were directed to a set of online questionnaires
measuring pain, hopelessness, connectedness, and suicidal ideations.
Respective instructions were provided at the start of each questionnaire.

Upon completion of the questionnaires, participants were directed to
an end of study form that indicated how to receive 0.5% course credit
for participating psychology courses or how to be entered to win a $20
gift card from their choice of Walmart, Amazon, or Tim Hortons. Specif-
ically, interested participants were directed to an independent Qualtrics
survey requesting their email, which served as an entry in the draw. Thus,
participants’ data is not linked to their name or email addresses. The end
of study form also included mental health resources for Grenfell students
(i.e., Counselling and Psychological Services contact information) and
the public (i.e., Bridge the GAPP, the Warm Line, and NL Mental Health
Crisis Line contact information). The study was approved by the Health
Research Ethics Authority (2024.215).

While these are the core aspects of the method section, it is common to
include other sections.

The analytic plan section may describe in detail the proposed statistical
analyses of the research. Part of others being able to replicate your
findings means they must have a sound understanding of your exact
analytic plan. For example, how (if you did) did you remove outliers?
Why did you choose a specific level of statistical significance? What type
of regression and variable entry method did you use? These details help
you justify and others understand your analytic choices.
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Unfortunately, these is reticence among psychologists to share these
details out of fear they have done something wrong or incorrectly.
Indeed, a study by Houtkoop et al. (2018) asked psychology researchers
about barriers to data sharing. Their results suggested that concluded
that 38% of researchers feared someone would discover errors in their
analyses or data, and 77% (!!) feared that others might conduct a differ-
ent type of analysis that would expose their own conclusions as invalid.
My recommendation is to be open and honest about your research and,
thus, willing to share the information.

Additionally, it is typically required to present the ethical approval of
your study. This section can briefly explain whether the study received
approval from an ethics committee or institutional review board (IRB)
(sometimes called a Research Ethics Board [REB]).

2.3 Collecting Data

The next step, after ethical approval, the goal is to carry forward your
study. You will collect data in accordance with your REB-approved design
until you have reached your a priori sample size-the sample size you
determined that you would need to have adequate statistical power.

2.4 Analyzing Data

An integral part of research is conducting the appropriate statistical
analyses. In essence, we have an hypotheses (i.e., idea/prediction) about
how the data should fit together (e.g., z and y are correlated; x > y).
Analyses allow us to model the data (i.e., force some structure to it) to
determine how well it fits with our hypotheses. The main goal of this
e-text is to outline some commonly employed statistical analyses used
in psychological research. As such, the chapters that follow may explain
and, through examples, complete statistical analyses.
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2.5 Disseminating Results

What do you do after you've conducted your analyses and came to a
conclusion whether your hypotheses were supported? Importantly, we
should communicate to other researchers and the general public exactly
what we did, what we found, and what are the practical applications/
meanings in an honest and transparent way. This can be through public
forums, academic journals, or as registered reports. Ideally, we can accu-
mulate enough evidence to support our theories and, ultimately, how
accurately we explain psychological phenomenon.

| strongly recommend reading Chambers (2019) to help uncover some
of the darker sides of our current publication structure.

2.6 Conclusion

This chapter introduced and explained the key considerations of a scien-
tific method, which seeks to take a theory that explains phenomenon
and test it empirically. This broad method is applicable across a range
of disciplines and specific research areas. Psychology is no exception.
The focus will be on statistical analyses-those used to test specific hy-
potheses-related to the PSYC 2925, 2950, and 3950 courses at Grenfell
Campus, Memorial University of Newfoundland.

2.7 Practice Questions

. Identify a theory in psychology you would be interested in testing.
. Derive a hypothesis from this theory.
. Design a hypothetical study to test the hypotheses.

W N -

Who are the participants?
What materials do you need?
What procedure would you follow?
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» Ensure people reading your study design could attempt to directly
replicate your results.

4. What parties would be interested in knowing the results of the study?
5. How would you communicate your results?
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3 Variables

Two behaviorists meet on the street. One asks the other, “You're
fine. How am | feeling today?

— Unkown

A variable is a characteristic or attribute that can vary or take on differ-
ent values. These values can be measured, observed, or manipulated
in a study. For example, we can measure anxiety symptoms, observe
aggressive behaviors on the playground, or manipulate the type of inter-
ventions a individual gets. As researchers we are particularly interested in
variables because they are directly referred to in our hypotheses. We can
use variables to examine relationships or make comparisons between
them, and draw conclusions about the phenomena we are are studying.

Consider the following hypotheses (see Section 2 for a refresher):

1. Children who are more anxious are more likely to engage in aggres-
sive behaviors.

2. Children enrolled in a novel intervention will have less anxiety
symptoms when compared to those in the standard/typical inter-
vention.

Based on these hypotheses, we have three key constructs to measure:
anxiety, aggressive behaviors, and intervention type. While there are
myriad ways to measure these things, the following is table provides
an example that can helps us turn constructs into some quantitative/
numerical representation:
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Possible Measurement

Variable Approach Value Range Example
. Beck Depression
Depression . P 0-63 Johnny scored 24
inventory
Numbers of times a
child pushes, Sally engaged in 4
. unches, kicks, aggressive
Aggressive P . . 99 . .
. spits, or throws 0 - infinity behaviors during
behaviors ) ,
objects at someone Monday's recess
during an individual period
recess period
. Karrie gets
- 0 - Typical/old g i
. Clinician randomly | . . randomly assigned
Learning . . intervention; 1 - .
. assigns kids to each to receive the
Intervention Novel/new o .
group . . typical intervention
intervention .
(coded as 0 in data)

Testing

Importantly, different variables have different characteristic. For exam-
ple, if we ask 100 people their ages, we can easily calculated their
average age using the arithmetic mean. However, if we ask them their
favorite color, we can’t calculate the arithmetic mean. Or related to the
example above, we could calculate the number of aggressive behaviors
a child exhibits per recess period, which would give us a number (e.g., 4).
Or, we could observe and classify children into a category of ‘aggressive’
or 'not aggressive.” Each will have pros and cons. Regardless, the way
you measure a construct will limit the ways in which you can analyse the
data. We will review four major classifications of variables—often remem-
bered using the acronym NOIR.

3.1 NOIR

Nominal, ordinal, interval, and ratio (NOIR) are four levels of measure-
ment that describe the nature of the values that a variable can take.
These levels of measurement are hierarchical, with each level including
all the characteristics of the levels below it. For example, a ratio variables
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carries all the characteristic of nominal, ordinal, and interval (and then
some!). Here's a brief explanation of each:

3.1.1 Nominal Level

Nominal variables involve categories without any inherent order or
ranking. Examples include gender, where categories are mutually exclu-
sive, yet there is no inherent order or ranking among them. In nominal
measurement, the focus is on classifying items into discrete categories.
Typically nominal variables are analysed using frequencies. We can
determine how many individuals endorse or identify within a specific,
mutually exclusive category. However, they also used in more complex
analyses such as chi-square. To visualize nominal variables, we may use
bar graphs. For example, we ask 100 Grenfell students “what is your
favorite color?” and get the following data.

Yellow
Red
Green
Blue

0 10 20 30 40
Frequency

Color

Figure 1: Students’ favourite colors.

As an example, consider the following: individuals may be randomly
assigned to one of two groups. One group receives a drug and the
other a placebo [a nominal variable]. Sometimes researchers use labels
to represent one’s value on a nominal variable. Others may use a number
to represent the value, with a “0” used to represent one group and “1”
used to represent another (see table below). Note: using a number to
represent a nominal variable does not create some numerical meaning
to the variable. Also, the number choice is arbitrary-0 and 1 could easily
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be 44 and —166684. Continuing with the example, researchers may then
determine the impact of the drug versus the placebo on the severity of
psycho-pathological symptoms [not a nominal variable].

Person Intervention Label Intervention Number

1 Placebo 0
2 Drug 1
3 Placebo 0
N Drug 1

As another example, perhaps we measure Grenfell students’ favorite
musician. We collect data from a sample of 75 students. We can calculate
frequencies of this nominal variable. We may represent the data the
following table, which has both text labels (e.g., “Taylor Swift”), and
numerical, “dummy-coded” labels. Here, a score of O indicates that
Taylor is the favorite artist, 1 indicates Adele, and 2 indicates Drake. |
have placed a “?” in one cell.

Individual/Participant Artist Label Artist Number

1 Taylor 0
2 Adele 1
3 Taylor Swift 0
4 Drake 2
75 ? 1

© Think about it

Based on the above table, who is person 75’s favorite artist?

We can also represent the final data as a graph. For example, a bar graph
can be used to show the frequencies of the groups:
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Nominal Data

50
45
40

> 35
2 30
8 o5
8 20

L 15

10

Adele Drake Taylor Swift
Artist

There is no inherent order here.

3.1.2 Ordinal Level

Ordinal variables possess a meaningful order or ranking of categories.
However, the intervals between categories are not consistent or mean-
ingful. That is the relative ranking is meaningful (e.g., category x comes
before category y, which comes before category z). However, the differ-
ences between these categories are not uniform (the difference between
category x and y is not necessarily the same as the difference between
category y and z).

For example, consider a typical Likert-style scale (pronounced LICK-ert
and named after its developer: American psychologist Rensis Likert).
The difference between strongly agree and agree is not necessarily
the same difference between agree and neither agree not disagree,
regardless of the numbers you may assign to them. Or, as another
example, consider educational levels of employees at Grenfell (e.g., high
school diploma, bachelor’s degree, master’s degree, PhD). While you
might be able to rank them, the differences between the categories is
not equal for each level (i.e., the educational difference between a BA
and an MA is not necessarily the same difference between a MA and
a PhD).

The figure below shows both nominal and ordinal data. There is no
inherent order for artists. You could impose some sort of order, such as
alphabetical, but it is likely unrelated to the research question of interest.
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However, students typically progress sequentially in their education (i.e.,
their is an order): first comes bachelor’s, second masters, third PhD.
Importantly, both can be represented as bar graphs.

Nominal Data Ordinal Data
50 50
45 45
40 40
3 35 (>J~ 35
% 30 GC.) 30
> 25 35 25
& 20 g 20
I 15 - 15
10 10
5 5
0 0
Adele Drake Taylor Swift Bachelor  Master PhD
Artist

There is no inherentorder here. There is an order here.

Figure 2: Nominal and ordinal data.

3.1.3 Interval Level

Interval variables maintain a meaningful order, and there are consistent
intervals between values. However, these variables lack a true zero
point—zero does not represent the absence of the measured quantity.
Examples include temperature measured in Celsius or Fahrenheit; when
it's zero degrees out, it does not mean there is no temperature. Also,
20 degrees Celsius isn't twice as much temperature as 10 degrees.
Another example would be 1Q scores: an IQ score of zero does not exist.
Furthermore, an 1Q of 120 isn’t “twice as smart” as someone with an |IQ
of 60.

In interval measurement, researchers focus on both the order and the
equal intervals between values. The difference between n values is equal
for each ordered pair. Consider four ordered value:

a,b,c,d

Interval values have the property such that the difference between a and
b is the same as the difference between b and ¢, which is the same as the
difference between c and d:
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a—b=b—c=c—d

3.1.4 Ratio Level

Ratio variables exhibit a meaningful order, consistent intervals between
values, and a true zero point. In this level of measurement, a score of
zero represents the absence of the measured quantity. Examples include
height, weight, income, and age. Someone 120cm tall is twice as tall
as someone who is 60cm tall. Someone who is 50 is twice as old as
someone who is 25. The quantity of time since they were born is approx-
imately twice as big. Ratio measurement allows for meaningful ratios and
absolute distinctions between values.

The following table may be helpful, adapted from Nunnally & Bernstein
(1994), who adapted it from Stevens (1951):

Scale Operations Transformations Statistics Examples
Nominal | Equal/not equal So many Frequency; Gender; political
mode party;
employment
status
Ordinal | Greater/less than Monotonically Median; SES (low, middle,
increasing percentiles high); Likert-style
items
Interval Equality of General linear | Arithmetic mean; Temperature
intervals variance
Ratio | Equality of ratios Multiplicative Geometric mean | Height; weight

In addition, we can describe variables in terms of their function in our
models. Note that these are independent of which type within NOIR that
they are. We will focus on experimental and regression models.

3.2 Experimental Variables

An experiment has a typical structure, where the researcher manipulates
one variables and observes another. Participants are typically assigned to
the manipulated variable through a process called random assignment.
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In random assignment, each participant has an equal probability of being
assigned either value of the manipulated variable. Thus, there will be no
systematic differences between the group of participant who received
one value of the manipulated variable or the either.

O Definition

Random assignment is a research method used to place participants
into different experimental groups (such as a treatment group or a
control group) using a random process like flipping a coin or using a
random number generator.

Participants are then observed/measures on a second variable. Any
differences in the observed variable are then attributed to the initial
manipulation. There are two main types of variables in experimental
psychological research.

3.2.1 Independent Variable (IV)

Independent variables (IVs) are variables that are manipulated or con-
trolled by the researcher. It is the variable that is hypothesized to cause a
change in the dependent variable. For example, in an experiment inves-
tigating the effects of a new teaching method on student performance,
a researcher may design two teaching methods. Students are randomly
assigned to one of the two conditions. The teaching method would be
the IV.

The IV is often broken into two major groupings/conditions: the control
group/condition and the experimental group/condition. A control group
is the baseline that receives no treatment or a placebo, while the experi-
mental group gets the actual intervention being tested. If the researcher
has successfully randomly assignment participants to a IV condition,
then both groups should be relatively similar on all other variables (e.g.,
age, gender, income), allowing researchers to isolate the effect of the
IV and compare results to see if the treatment caused a change in the
dependent variable.
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O Think about it

While the IV is often broken into a control and experimental condi-
tion, it could be more than two conditions. For example, a study
by The MTA Cooperative Group (1999) —one of the longest and
comprehensive treatment studies for ADHD-had four groups: 1)
medication management; 2) intensive behavioral treatment; 3) the
two combined; or 4) standard community care (treatments by com-
munity providers).

Importantly, experimental variables are mutually exclusive from which
type of NOIR variable it is. An independent variable could, theoretically,
be nominal, ordinal, interval, or ratio.

3.2.2 Dependent Variable (DV)

Dependent variables are variables that are measured or observed with-
out some form of manipulation. Typically, in the context of experimental
research, dependent variables are believed to differ based on or because
of the independent variable. It depends on the independent variable.

Consider an example wherein researchers want to know if the different
teaching methods lead to different student outcomes (e..g, better
grades). The researcher could manipulate which students receive which
interventions (the IV) and measure the student outcomes (the DV).

Importantly, and again, this is mutually exclusive from our NOIR vari-
ables. A dependent variable could, theoretically, be nominal, ordinal,
interval, or ratio.

Another type of experiment is call a quasi experiment. This is a study
that evaluates an intervention’s impact but lacks random assignment
to treatment or control groups. It resembles a true experiments but
using existing groups-like different classrooms or communities—for com-
parison instead. For example, consider our experiment about different
teaching interventions. Perhaps the researcher cannot randomly assign
kids to receive one method or the other and, instead, must select a
school that has a specifically trained educator to implement the teach-
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ing method. Here, the kids are not randomly assigned: there may be
systematic differences about the classroom that receives the new versus
old method.

The sample is randomly assigned Sample
to a certain condition of the

independent variable. / \

Independent Experimental Control
Variable Condition Condition
Dependent Outcome Outcome
Variable Variable Variable

Differences in the same dependent variable are compared.
Any differences are attributed to the manipulated IV.

Figure 3: The experimental method.

3.3 Other Considerations

Researchers also consider and control for extraneous variables, which
are variables that are not the focus of the study but could potentially
influence the results. Controlling for these variables helps ensure that any

observed effects or associations can be attributed to the manipulation
of the IV.

3.3.1 Extraneous Variables

Extraneous variables are any variables other than the IV that may influ-
ence the results of an experiment. These variables are unwanted or
unplanned factors that can introduce variability into the study, making it
difficult to determine the true effect of the IV on the DV.
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For example, if a researcher is investigating the effect of a new teaching
method on student performance, extraneous variables could include
the students’ prior knowledge, motivation, or even the time of day the
experiment is conducted.

3.3.2 Confounding Variables

Confounding variables are a specific type of extraneous variable that
systematically varies with the IV and has a causal relationship with the DV.
In other words, confounding variables can lead to a false interpretation
of the relationship between the IV and DV. The researcher may believe
that the IV had an impact on the DV, but it was actually a confounding
variable.

Confounding variables can obscure the true effects of the independent
variable, making it challenging to attribute changes in the DV solely to
the manipulated IV.

For example, consider a study that examines birth order and likelihood
of having autism. The researcher may conclude that the youngest sibling
(quasi-experimental IV; researcher cannot manipulate birth order) is
more likely to develop autism (DV). However, it may be that younger sib-
lings’” mothers and father are older when during prenatal development:
both being risk factors for developing autism (Wu et al., 2017). Thus,
maternal and paternal age are better explanations for the development
of autism compared to birth order, which is related to maternal and
paternal age.

3.4 Regression Variables

Variables in regression and correlation studies are not typically called
independent and dependent variables. First, regression typically uses a
predictor variable or set of predictor variable that are used to make
predictions about another variable. Predictor variables are sometimes
referred to as independent variables, analogous to an independent vari-
able in experiments, but in correlational studies, it's about relationships
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and not necessarily causation. Last, the criterion variable is the outcome
or behavior that is being predicted or explained. It is sometimes referred
to as the outcome variables or the dependent variable.

For example, by knowing z, how well could | predict someone’s score on
y? If our hypothesis and subsequent model is accurate to the real world
phenomenon, the predictor variables will do a good job. However, rarely
can we perfectly predict the criterion variable, so there will be some error
in our predictions. The typical structure is depicted as (a familiar sight,
| hope):

Y = T; + €

Or, as another example, by knowing someone’s degree of social dis-
connect, how well can | predict the severity of their current suicidal
ideations?

ideations; = disconnect; + e,

3.5 Conclusion

Variables in psychological research are key elements that researchers
manipulate, measure, and/or analyze to gain a better understanding
of psychological phenomena. Your theory and subsequent hypothesis
will determine your variables of interest. How you operationalize your
variables determines how you should measure them. How you measure
them determines what your resulting data will be. Your data will deter-
mine the types of analyses you can do. The types of analyses you do
determine the conclusion you can draw. Thus, it is imperative to effec-
tively plan your research Methods to ensure that you can answer your
research question and hypotheses.

3.6 Practice Questions

|dentify the type of the following variables (NOIR):
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8.

. The order of finishing for the participants in a race.

The numerical value representing the income level of individuals in a
particular household.

Temperature difference between two consecutive days.

The preferred mode of transportation chosen by respondents.
Number of hours a student spends studying for the exam.
Participant gender,

Customer satisfaction levels on a scale from 1 to 5.

What are the IV and DV in the following experiment?:

A study investigates the impact of sleep duration on memory retention
in college students. Participants are randomly assigned to either a
group with regular sleep patterns (7-8 hours per night) or a group with
restricted sleep (4-5 hours per night). Memory performance is assessed
through a standardized memory test administered the following day.

9.

Identify some confounding variables for the previous studly.

3.7 Answers

© N O U kA DN

. Ordinal

Ratio
Interval
Nominal
Ratio
Nominal
Ordinal

IV = sleep; DV = standardized memory test
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9. Stress level; individual variability in required sleep (i.e., what if some-
one in the restricted group only needs 5 hours); caffeine use prior to
testing; sleep quality (e.g., total REM sleep for the night); etc.
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4 Types of Statistics

This chapter will introduce two classifications of statistics: descriptive
and inferential. While both are commonly used in psychology, they each
have different use cases. By the end of this chapter, you will have a sound
understanding of both.

4.1 Descriptive Statistics

Descriptive statistics involve the use of numerical and graphical methods
to summarize and present data in a meaningful way. Descriptive statistics
focus on describing and summarizing the main features of a variable or
data-set. The primary goal is to simplify large amounts of data. This
can help researchers, clinicians, and the public understand it. Some com-
monly used descriptive statistics include measures of central tendency
and variability.

4.1.1 Central Tendency

Central tendency has to do with the typical or average score for a
variable of interest. There are three main ways to calculate the central
tendency of a variable: the mean, median, and mode. Prior to explaining
each, let's imagine we measure the age of five university students’ and
get the following data:

1 20
2 19
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3 23
4 22
5 19

4.1.1.1 Mean (Average)

The mean is one way we can understand the ‘average’ score of partic-
ipants. The mean is the sum of all values divided by the number of
observations:

For our hypothetical data above:

2 1 2 2241
5 0+ 9—|-53-I- + 9:20.6

There are several benefits of using the mean. The first benefit is that the
mean takes into account every data point in the data-set, making it sen-
sitive to changes in any value. For example, if the first person measured
was 25 years old, and not 20, the new mean would be 21.6-an increase
of 1. The second benefit is that the mean has convenient mathematical
properties, making it suitable for various statistical analyses.

The major downside to using the mean is that it is highly sensitive to
extreme values (outliers). Having a few outliers can drastically skew the
result. Let's add one extreme value to our hypothetical data: a person of
age 68. Our new mean would be:

2 1 23+22+1
5 0+19+ 3—g + 9+68:28.5

You can see how drastic the change is (20.6 compared to 28.5). Or, as
another example, imagine that you are interested in determining the
average household income in Corner Brook, NL. You sample 10 houses
and get the following data:

47



Household Income

1 48000
52000
25000
101000
23000
55000
45000
100000
23000
950000

ol ool I NN o N WO, |l - NOUR I \ )

—_
o

Notice that the 10th household you sample has a substantially higher
income ($950,000). Indeed, when including household 10, the mean is
142200 Indeed, the mean is higher than all but one of our household
incomes.

4.1.1.2 Median

The median is the middle value of a variable in a data-set when the scores
are ordered numerically from least to greatest. It represents the 50th
percentile of the data, meaning half of the values fall below it and half
above. If the data-set has an even number of observations then there
will be two middle values and the median will be calculated by taking
the mean of the two middle values.

The main benefit of the median is that it is not influenced by extreme
values, making it a robust measure of central tendency, especially for
skewed distributions or those with outliers.

The main drawback is that it only considers the order of values, ignoring
the actual numerical differences between them, which means it doesn’t
capture information about the magnitude of differences in scores in the
data-set.

When calculating the median by hand, it's helpful to first order the values
from least to greatest For example, let's order our 5 individuals, who's
ages we collected:

48



2 19
5 19
1 20
4 22
3 23

Here, with an odd number of value, calculating the median is simple. It's
the middle value (i.e., the 3rd of 5). The median is 20.

However, suppose we sampled another person, who's age was 68. What
would the new median be?

O Answer

The new median would be 21.

Notice how the median was less influenced by the 68-year-old outlier
than the mean. The median changed by 1 when we included the
outlier, while the mean changed by 7.9.

4.1.1.3 Mode

The mode is the most frequently occurring value of a variable in a data-
set.

There are benefits and downsides to using the mode. It is particularly
useful for nominal data, where there is no inherent order to the values,
and it is also easy to understand and calculate. However, a data-set may
have no mode. If each values occurs the same amount of times (e.g., each
value only occurs once), one should use an alternative form of central
tenancy. Furthermore, is that it is possible to have multiple modes. In
this case, the distribution is described as multimodal (e.g., consider the
scores on a variable of 4,4, 6, 8, 8; there are two modes). Last, the mode
may not provide an accurate representation of the center of a distrib-
ution, especially for variables with skewed range of values.

Using our age example, what would be the mode?
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1 20
2 19
3 23
4 22
5 19
© Answer
The mode is 19.

4.1.2 Variability

Variability refers to how spread out or dispersed the values of a variable
in a data-set are. It gives an indication of how much the data points
differ from each other and from the central tendency (e.g., the mean or
median). High variability means the data points are spread widely apart,
while low variability indicates they are clustered closely together.

The following shows the variability in three variables:

Frequency

Score
Figure 4: Three distributions with difference variability.

In the above, you can tell that the light green distribution is more
dispersed than the medium green distribution, which is more dispersed
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than the dark green distribution. The dark green group is more closely
grouped towards the center and mean of their group, whereas the others
are more spread out. Said another way, the average distance between
any score and their group’s mean is much smaller for the dark green
group compared to the medium green, which is smaller than the light
green group.

4.1.2.1 Range

The range represents the difference between the minimum and maxi-
mum values of a variable in a data-set. It is a quick way to determine the
variability in scores and allows us to identify outliers or other extreme
scores.

However, range tells nothing about the type of distribution of the data
you are describing. A range cannot tell us if data are skewed. For
example, all three of following distributions of data have the same range:

Negatively Skewed Normal Positively Skewed

Density

J

Value

For now, though, let’s return to our age data:

1 20
2 19
3 23
4 22
5 19
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For our hypothetical age data above, the min value is 19 and the max
value is 23. Thus, the range is:

Range =23 —19 =14

4.1.2.2 Variance

Variance quantifies the spread of data points in a data-set. It is the aver-
age squared differences from the mean. It indicates how much individual
data points deviate from the mean, with a higher variance reflecting
greater variability.

Variance is widely used to assess variability, identify trends, and predict
outcomes. For instance, in psychological research, variance helps mea-
sure individual differences or treatment effects across groups.

A benefit of using variance is that it considers all data points in the data.
A drawback is that variance is sensitive to outliers, which can distort
the results. This is particularly problematic for small data sets. A second
drawback is that, since variance is expressed in squared units, it can be
difficult to interpret in practical terms. To address this, the square root
of variance, known as the standard deviation, is often used for better
interpretability.

Variance is calculated as:

Where:

e o2 is variance.

® > is the sum.

e n is the number of data points in the data-set.
e 1, represents each individual data point.

® 1 is the mean of the data-set.

The above is the population variance. The sample variance, which you
will likely use in your psychological research is:
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9 ZL (z; — 57)2

ST =

n—1

You may notice that the sample version uses n — 1 instead of n. This is
known as Bessel'’s correction.

© Bessel's Correction

Bessel's correction adjusts the denominator because sample means
are calculated from the data, sample deviations tend to be smaller.
We typically don’t know the true mean and, thus, have to estimate it
using our sample. When we do this we underestimate the true spread
of the data. Dividing by a slightly smaller number (n-1) makes the
variance estimate slightly larger, correcting for this bias.

The following figures show the estimate of variance in a sample when
using and not using Bessel’s correction. The vertical black line is the
true population variance. Notice that the distribution is more closely
centered around the true variance when using Bessel’s correction.

Divide by n - 1 (Bessel corrected)
1

600
400
200

o

Divide by n (biased)

Frequency

600
400
200

O == = = = -

0 200 300
Estimated Variance

0 1

For our data age data, the variance is:

o (20—20.6)% + (19 — 20.6)% + (23 — 20.6)? + (22 — 20.6)2 + (19 — 20.6)*
B 5—1

S
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4.1.2.3 Standard Deviation

Standard deviation is used to quantify the amount of variation or disper-
sion in a variable of a data-set. It is the square root of variance, making it a
more interpretable measure-it is expressed in the same units as the data.
Standard deviation is useful to help researchers understand how spread
out scores are around the mean, such as in assessing the variability of
test scores or behavioral responses. A low standard deviation indicates
that data points are close to the mean, while a high standard deviation
shows that scores have more variability.

The key benefit of standard deviation is that it's intuitive and inter-
pretable, especially compared to variance. It gives a clear sense of how
much data points deviate from the average. A drawback is that, like
variance, standard deviation is sensitive to outliers, which can inflate its
value (i.e., make it higher). A second concern is that may not fully capture
variability in skewed data-sets or those with non-normal distributions.

The formula for population and sample standard deviation can easily
be calculated as the square root of population and sample variance,
respectively. Or:

Population:

U@\/zm?w)

and using Bessel'’s correction for samples:

S:@:\/Z?%@jlm)

For our data:

\/(20 ~20.6)2 + (19 — 20.6)2 + (23 — 20.6)2 + (22 — 20.6)2 + (19 — 20.6)2
S = =
o—1
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13.2

The utility of means, variance, and standard deviation cannot be over-
stated (note: covariance is also imperative, but covered in a later
chapter). As you will learn, they are the foundation of many of our statis-
tical analyses. For now, let’s consider some commonly used graphs and
figures to represent data.

4.2 Graphs and Figures

4.2.1 Histograms

A histogram is often used to visually represent of the distribution of one
(1) non-categorical variable (not a ‘N’ in NOIR) in a data-set. It shows
the frequency of different ranges of values. Imagine we want to plot the
distribution of 1Q scores of 100 Grenfell students.

Histogram Example

O—=NWHOON®O©

65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140
Values

To read a histogram, start by examining the x-axis, which represents
the range of values in the data-set. The data is divided into intervals or
bins along the x-axis, and the y-axis displays the frequency or count of
observations within each bin.
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The height of each bar corresponds to the number of data points falling
within that bin. A key aspect is the width of the bins, as it influences the
visual interpretation. A narrower bin width can reveal finer details in the
distribution, while a broader bin width may smooth out fluctuations. As
an example, consider the following three histograms, all with the same
data, but differing bin widths. The frequency of each bin is represented
above the respective bin:

Binwidth = 20
120
3 90
< 60
S 60
8 21 19
L 9
60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140
Values
Binwidth =5
& 17
20 16
g 12 IJEIP!
g 10 4 4 £ 5 4
o 1 11
L o
60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140
Values
Binwidth = 2
> 15
2 10
g " 555 6/Ms5,, 56, 5
5 . T »3 44,594 545 4 imm
s om0 0 ofloo 00
0
60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140
Values

Figure 5: Impact of binwidth on histogram.

Additionally, the overall shape of the histogram indicates the data's
central tendency, spread, and symmetry. Peaks and valleys highlight
regions of higher or lower frequency, and the tails provide information
about outliers or other extreme values.

4.2.2 Box plots

Box plots are graphical summaries of the distribution of a variable in
a data-set, including the median, quartiles, and potential outliers. The
following box plot represents data from two groups. The left box repre-
sents one group, the right box the the other.
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Boxplot Example

Values

Group

4.2.2.1 Interpreting a Boxplot

First, the box—in our figure there are two colored boxes—represents the
middle 50% of the data, known as the interquartile range (IQR). The
lower (Q1) and upper (Q3) edges of the box correspond to the 25th and
75th percentiles, respectively.

Second, the line inside the box represents the median. You have already
read about what the median is, its benefits and downsides.

Third, the whiskers extend from the box to the minimum and maximum
values within a certain range. The length of the whiskers can vary. There
are several equations that may be used. It is common for any data
outside of the whiskers to be considered extreme or as outliers.

Fourth, outliers are individual data points that fall significantly outside
the typical range of the data. They are often plotted as individual points
or dots.

Box-plots are a great way to visualize a distribution and can inform
viewers on the nuances of the data not understood through a histogram.

4.2.3 Scatter plots

Scatter-plot display the relationship between two variables in a two-
dimensional space.
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Scatterplot Example
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Each dot represents a participant. Each participant has a score on two
variables. For example, let’s consider one participant who scored around
67 on variables 1 (x) and 41 on variable 2 (y). Can you pinpoint their
location on the above figure?

Scatterplot Example
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Scatter-plots serve as powerful tools for exploring the relationship be-
tween two variables in a data-set. The direction in which points trend
across the two-dimensional plane, whether upward (i.e., dots get higher
as you look from left to right) or downward (i.e., dots get lower as you
look from left to right), offers insights into the association between the
variables. Conversely, if the dots seems to form a circle, horizontal line,
or vertical line, no meaningful relationship may exist.
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As the relationship between two variables increases, the points will
converge to a diagonal line. If the correlation between two variables
is exactly —=1.0 or 1.0, all dots will fall perfectly on a diagonal line. For
example, here are sample scatter plots for various correlations.

Correlation =-0.2 Correlation =0
(@) O
% QD%O(QD O
@
= o
~ Oo C%@
% Correlation =0.95
.g o
>
@)
O
]
Variable 1 (x)

Figure 6: Visualizing different correlations.

The following correlations are all O (i.e., no relationship).

Variable 2 (y)

Variable 1 (x)

Variable 2 (y)

Variable 2 (y)

Variable 1 (x)

Descriptive statistics provide a concise summary of the main features
of a data-set, aiding in the interpretation and communication of data
patterns. These statistics are fundamental for understanding the charac-
teristics of a data-set before applying more advanced statistical analyses
or drawing conclusions based on the data.
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4.3 Inferential Statistics

Our theories and hypotheses are typically assumed to apply to a specific
population. Some examples of populations we may be interested in
are men, those with depression, university students, or Grade 3 French
Immersion Students. Sometimes our population of interest is the general
public, everyone.

Sampling from a population is essential in research because studying an
entire population is often impractical due to limitations in time, cost, and
accessibility. For example, in large populations, such as all residents of
a country or all patients with a particular medical condition, it is usually
impossible to gather data from every individual. Thus, we must take a
sample-or a subset of the population. Researching a sample that is
representative of the population allows researchers to draw meaningful
conclusions about the whole population while conserving resources.
However, the challenge lies in selecting a sample that accurately repre-
sents the population to ensure the findings can be generalized.

A sample is a subset of the population that will be studied, which
allows researchers to draw meaningful conclusions about the whole
population.

4.3.1 Sampling Methods

To ensure that a sample is unbiased, researchers use several strategies.
First, random sampling is one of the most reliable methods, where each
individual in the population has an equal chance of being chosen. This
reduces the likelihood of selection bias and ensures that the sample
mirrors the diversity of the population. For instance, if studying a
town'’s attitudes towards healthcare, random sampling would give each
resident an equal chance of being selected, regardless of age, gender,
or socioeconomic status. Because each individual is randomly selected,
the sample as a whole should not be systematically different from the
population of interest.

60



Second, researchers can use stratified sampling. Here, the population
is divided into subgroups or strata based on specific characteristics (such
as age, gender, or income). From each subgroup, random samples are
then drawn. This method is particularly useful when researchers want
to ensure that all key groups within the population are represented in
the sample. For example, in a study of high school students’ academic
performance, stratified sampling might involve dividing students by
grade level and then randomly selecting a proportional number from
each grade. This ensures an equal number

A third method is systematic sampling. Systematic sampling offers
a structured-yet efficient!-way of selecting a sample. In this method,
every n" person in the population is selected, with the starting point
chosen randomly. This method can be easier to implement than random
sampling while still providing a fair representation of the population, as
long as there is no hidden pattern in the population that could influence
the selection.

A fourth method is cluster sampling. Here, the researcher divides
the population into groups or clusters, such as geographic regions
or schools, and then randomly selecting entire clusters for study. This
method is particularly helpful when the population is large or spread out
over a wide area, as it simplifies the data collection process. However, it
may introduce bias if the selected clusters systematically differ from the
population. When this is the case, the sample will not be representative
of the entire population.

One last method | will mention is snowball sampling. Snowball sampling
can begin with another sampling strategy, such as random sample.
However, when a participant completes the study, they are asked to
recruit or refer additional participants from their networks. This method
is particularly useful for niche populations of interest, or groups that are
hard to identify and reach through other sampling methods.

Sampling from a population is vital for making research manageable and
cost-effective. Using methods like random sampling, stratified sampling,
systematic sampling, and cluster sampling helps ensure that the sample
is unbiased and representative, allowing researchers to confidently gen-
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eralize their findings to the broader population. Deciding which method
is best for you will depend on your time, money, population of interest,
and research question.

Population Sample
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Figure 7: The left depicts the population. The orange individuals, who
are randomly selected, are the sample.

After we identify a suitable sample, we collect data from that sample. As
discussed, a major requirement is that the sample is representative of the
population of interest. It is imperative to inferential statistics that this is
the case. Specifically, the sample should share the same characteristics as
the population of interest. Why does this matter? Importantly, once we
analyze our data using the sample, we assume the results generalize to
the entire population. We infer about the population based on research
using samples: inferential statistics. The more discrepant our sample is
from our population, the less likely the results of our results will gener-
alize to the population.

To demonstrate, consider the following example. Imagine we are inter-
ested in understanding the link between depression and anxiety in
Grenfell Campus Students (our population). While we typically will never
know the true data of the population-if we did, we wouldn’t need to
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sample in the first place-let's assume we do. Here is a figure representing
all Grenfell Students.

Anxiety

Depression

We don’t have the time or money to sample all students. Perhaps we
recruit students outside of heath services-they conveniently let us set
up a a recruitment table-and end up with data from 100 students.
These 100 individuals are our sample. Their specific data can be viewed
below (indicated by dark purple). Visually inspect the data we collect and
compare it to the population values. Do you notice any discrepancies

between the trend?

e
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Depression

A formal analysis would reveal that this sample has a correlation between
depression and anxiety of .001, which is an underestimate of the true
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population correlation of .3. Why might this sample be unrepresentative
of the population? Sometimes it's simply random chance, but in this
example it's likely something systematic.

© Think about it.

We sample outside of the campus health center. Might these students
be truly representative of the population of interest?

Perhaps students who frequent health services, which also includes
mental health services, are more likely to have higher levels of
depression and/or anxiety. Thus, this sample is unlikely to be truly
representative of all Grenfell students.

Instead, imagine we take a truly random sample by randomly selecting
100 students numbers and having those students complete our studly.
We obtain the following data. Note that represents all
students, while dark green represents our sample.

Anxiety

Depression

We would conduct analysis with the sample and infer that they gener-
alize to the population! In the above example, the relationship between
anxiety and depression is 0.34. While in the real world we don’t know
the true population parameter/data, in this hypothetical example, the
TRUE correlation is 0.3. Our sample statistics aligns relatively well with
the population parameter.
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4.4 Conclusion

This chapter provided a introduction to some commonly used descrip-
tive statistics, and their benefits, downsides, and uses. Furthermore,
commonly used figures/graphs were introduced. Last, the ways in which
samples are used to infer larger scale conclusions about populations of
interest were detailed.

The following chapters outline the various analyses we can use to make
population-based inferences from samples of data. Each analysis has
situations where it can be best used, which will largely depend on the
research question and hypotheses of interest. Remember, the research
question determines the method, not the other way around.

4.5 Practice Questions

1. How can inferential statistics help psychologists draw meaningful
conclusions from data, beyond just describing the sample at hand?

2. Can inferential statistics be misinterpreted or misused, and what steps
can psychologists take to ensure the accuracy and validity of their
statistical inferences?

3. What challenges and opportunities arise when applying inferential
statistics to complex psychological phenomena, such as emotions,
cognition, or interpersonal relationships?

4. How do cultural and contextual factors impact the appropriateness
and interpretation of inferential statistics in cross-cultural psycholog-
ical research?

The following are 10 salaries of randomly sampled Canadians.

Salaries

42000
42000
36000
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Salaries

58000
17000
24000
67000
87000
41000
32000
525000

5. Calculate the mean with and without the outlier (the last observation).

4.6 Answers

5.
Mean with: $94,727.27
Mean without: $53,111.11

As you can see, the mean with is WAY higher than the mean without with
one outlier. Imagine the answer to the question, ‘what is the average
Canadian salary?’. How might you answer?
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5 Probability

SO YOU'RE
TELLING ME
THERE'S A

Imagine you are at a party. People slowly start coming to the party;
the room you are in is starting to get full. Probability questions: How
many people need to be at the party for there to be a 50/50 chance
(p=.5) that two people have the same birthday? The answer is the
end of the chapter.

Understanding probability is integral to understanding research and sta-
tistics in psychology. Specifically, probability is a branch of mathematics
that deals with the likelihood of an event occurring. It quantifies uncer-
tainty and helps us make informed decisions based on the likelihood of
various outcomes. Probability values range from O to 1, where 0 indicates
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an impossible event (i.e., it will never happen), and 1 indicates a certain
event (i.e., it's guaranteed to happen).

5.1 Basic Concepts

The following are some basic concepts we must understand prior to
diving into probability. An outcome is a possible result of a situation.
An event is a specific outcome or set of outcomes. Finally, the sample
space is the set of all possible outcomes of a situation.

© Definitions
Outcome is a possible result of a situation.
Event is a specific outcome or set of outcomes.

Sample space is the set of all possible outcomes of a situation.

As a practical example, consider flipping a coin. An outcome is a single
possible result of the situation; in this case, the outcomes are Heads (H)
and Tails (T) (we will ignore the fact that it is entirely possible for the coin
to land on its side). The sample space is the set of all possible outcomes,
which for a coin flip is represented as {H, T}. Additionally, an event is a
specific set of outcomes. For example, we can define Event A as “getting
Heads"”, which can be represented as the set {H}. Alternatively, we might
define Event B as getting either Heads or Tails, represented as the set
{H, T}. This framework helps us understand and calculate probabilities
based on different scenarios.

5.2 Calculating Probability

The probability P of an event A is calculated using the formula (note the
syntax of P(A):
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Number of favourable outcomes for A

P(A)

~ Total number of outcomes in sample space

O Think about it

Favorable does not mean we necessarily want the outcome. Favor-
able means that the event in question happens. It's favorable for the
event.

For example, consider a simple experiment: rolling a six-sided die. We
want to test to probability of rolling an even number. To this end, we can
derive the following:

e Sample Space (S): {1, 2, 3, 4, 5, 6}
e Event (A): Rolling an even number {2, 4, 6}

To calculate probability, we can sum the number of favorable outcomes
and divide it by the total sample space. There are three favorable
outcomes: rolling a 2, 4, or 6. The total sample space is all the possible
outcomes, of which there are six: rolling a 1, 2, 3, 4, 5, or 6. Thus:

1. Number of favorable outcomes for A: 3 (2, 4, 6)
2. Total number of outcomes in sample space: 6

Using the above formula, we can calculate the probability:

PA=5=3

So, the probability of rolling an even number is P = § = .5, or 50%.

5.3 Compound Events

5.3.1 AND Probability

The AND probability (also known as joint probability) is used when we
want to find the probability that two events A and B both occur. The
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formula for calculating the AND probability of two independent events
is:

P(A AND B) = P(A) x P(B)
So, the joint probability can be calculated by multiplying the indepen-
dent probabilities together.

Consider two independent events. We have one die and want to deter-
mine the probability of:

e Event A: Rolling a 3 on the first roll and then
e Event B: Rolling an even number on the second roll

We first calculate the probability for each event independently.

1. Probability of Event A: P(A) = ¢ (only 1 favorable outcome)
2. Probability of Event B: P(B) = 2 = 1 (3 favorable outcomes)

Using the formula:
P(A AND B)=P(A) x P(B) =

Thus, the probability of rolling a 3 and then rolling an even number is .
Note that we cannot roll both a 3 and an even number on one die. Also,
it's imperative to recognize that the events are independent and do not
influence one another. Thus, in the example we are rolling a 3 and then
rolling an even number. Or, having two dice and having one land on 3
and the other being an even number.

5.3.2 OR Probability

The OR probability is used when we want to find the probability that at
least one of two events, A or B, occurs. The formula for calculating the
OR probability is:

P(A OR B)=P(A)+ P(B)— P(A AND B)

Let's calculate the OR probability for the same events from before.
Imagine we have one die and our favorable events are:

e Event A: Rollinga 3 OR
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e Event B: Rolling an even number
We can calculate the independent probabilities:

1. Probability of Event A: P(A) = ¢
2. Probability of Event B: P(B) = 1
3. Probability of Event A AND B: P(A AND B) =0 (rolling a 3 and

an even number is impossible)
We can substitute the values into our formula to derive:

P(A OR B)=P(A)+ P(B)— P(A AND B)

Thus, the probability of rolling a 3 or an even number is 2. If we have a
fair die, we will makes a bunch of rolls, we would expect to roll a 3 or
an even number 75% of the time. This intuitively makes sense when we
consider that their are four favorable outcomes (2,3,4,6) and six total
outcomes (1,2,3,4,5,6).

5.4 Conclusion

Understanding probability is crucial in psychological research, particu-
larly in the context of null hypothesis significance testing (NHST; our
next chapter). Probability helps researchers determine the likelihood of
observing results under the assumption that the null hypothesis is true.
By calculating the probability of different outcomes, researchers can
assess the strength of their evidence against the null hypothesis, making
it easier to identify statistically significant findings. Furthermore, learning
how to interpret and combine probabilities allows researchers to better
evaluate the risks of Type | and Type Il errors, ultimately leading to more
informed conclusions and decisions in psychological studies.

Answer to the riddle
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Let’s start by having one person in the room. Let’s think about the
probability that their birthday is unique. That's easy! Of course it is! The
probability that their birthday is unique is

365
— =1.00
365

What about the second person. What's the probability that their birthday
is unique?

364

2 = 9972

365 99726
What about the third person?

363

— =.99452

365

You know that when we require two or more events to occur (an AND
probability), we can multiply their respective probabilities. Thus, the
probability of all three people having unique birthday is:

365 364 363
— 991
365 < 365 < 365 018

This equation can be simplified when we know the number of unique
pairs. With two people, there is one unique pair. When we have 10

people there are % unique pairs. This can be calculated as:
nx(n-—1
p=mX (=D

Where p is the number of unique pairs. This can be plugged into:

L (38
365

Let’s plug in a number....20. The results are:

20x19

364
1— (== = 0.6474
(365)
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This means there’s a 64.74% chance that 20 people in a room all have

different birthdays—or a ~35% chance they have at least one overlapping
birthday.

We can plot the results as:

o

© o o o =
o N o ©

o - b
[SIN

Probability of Same Birthday
© o o o
N (63}

o
o

©
o

20 30 40 50 60 70 80 90 100
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5.5 Practice Questions

Calculate the probability of the following:

1. A standard six-sided die is rolled. What is the probability of rolling
a number greater than 47

2. A standard deck of 52 playing cards is shuffled. What is the proba-
bility of drawing an Ace from the deck?

3. Afair coin is flipped once. What is the probability of getting Heads?

4. A bag contains 5 red marbles, 3 blue marbles, and 2 green marbles.
If one marble is drawn at random, what is the probability of drawing
a blue marble?

5. Two six-sided dice are rolled. What is the probability that both dice
show a number greater than 37

6. From a standard deck of 52 playing cards, what is the probability of
drawing a King and then drawing a Queen without replacement?
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. A bag contains 4 red marbles and 6 blue marbles. If two marbles
are drawn one after the other without replacement, what is the
probability that both marbles are red?

8. Two fair coins are flipped. What is the probability that both coins
show Heads?

9. A standard six-sided die is rolled. What is the probability of rolling
a2orab?

10. From a standard deck of 52 playing cards, what is the probability of
drawing a Heart or a Spade?

11. In a basket containing 3 apples, 2 oranges, and 5 bananas, what is
the probability of randomly selecting an apple or a banana?

12. A fair coin is flipped twice. What is the probability of getting Heads
at least once?

5.6 Answers

1. Favorable outcomes: Rolling a 5 or 6 (2 outcomes: {5, 6}). Total
outcomes: 6 (humbers: {1, 2, 3, 4, 5, 6})
_ Number of favorable outcomes 2

P(A) = _ =
(4) Total number of outcomes 6

1
3
2. Favorable outcomes: There are 4 Aces in the deck. Total outcomes:
52 cards

3. Favorable outcomes: Getting Heads (1 outcome: {H}). Total out-
comes: 2 (Heads and Tails: {H, T})

P(4) =3

4. Favorable outcomes: There are 3 blue marbles. Total outcomes: 5
red + 3 blue + 2 green = 10 marbles.
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3

P(4) = =

5. Favorable outcomes: Rolling a 4, 5, or 6 on each die. Total out-
comes: Each die has 6 outcomes, so the total outcomes for two dice
is6 x 6 = 36.

The probability of one die showing greater than 3 is 2 = 1.
Therefore, for both dice:
1

N | —
X
N | —

P(both > 3) = P(die 1 > 3) x P(die 2 > 3) =
6. Favorable outcomes: 4 Kings, followed by 4 Queens. Total out-
comes: 52 cards, then 51 remaining cards.
P(King and Queen) = P(King) x P(Queen | King)

4 4 16 4

52 "Bl 2652 663
7. Favorable outcomes: 4 red marbles. Total outcomes: 10 marbles.

P(both red) = P(first red) x P(second red | first red)

4 ><3_12_ 2
1079 90 15

8. Favorable outcomes: Both coins show Heads (1 outcome: {HH}). Total
outcomes: 4 outcomes: {HH, HT, TH, TT}.

P(both Heads) =

N R

9. Favorable outcomes: Rolling a 2 or a 5 (2 outcomes: {2, 5}). Total

outcomes: 6 outcomes.

2 1

P(2 or 5)=P(2)+ P(5) = +%—6 3

1

6

10. Favorable outcomes: 13 Hearts + 13 Spades = 26. Total outcomes:
52 cards.
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13 13 26 1
P(Heart or Spade) = P(Heart) + P(Spade) = ) + 5T

11. Favorable outcomes: 3 apples + 5 bananas = 8. Total outcomes:
10 fruits.
P(apple or banana) = P(apple) + P(banana) = 3 + > _8_14
PP - PP “10710 10 5
12. Favorable outcomes: HH, HT, TH (3 outcomes). Total outcomes:
{HH, HT, TH, TT} (4 outcomes).
1 1

1 3
P(at least 1 Head) = 1 + = 171

S
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6 Statistical Models

This chapter introduces statistical models. These models are of utmost
importance in our analyses. Our models are often derived from our
hypotheses and inform us the degree to which what we expected to
happen aligns with the data. We are comparing our expectations with
our observations. We expect a ball we throw up to come down. Does
it? We expect that when we study, we will perform better. Do we? Or,
we expect people with higher depressive symptoms to have an increase
probability of making a suicide attempt compared to those with less
depressed symptoms. Do they?

O Definition

A statistical model is a mathematical framework used to represent,
analyze, and make predictions about data.

It is often used to explain relationships between variables, such as
the effect of one or more independent variables (predictors) on a
dependent variable (outcome).

Statistical models help researchers. First, they help provide a simplified
representation of complex data. This makes it easier to understand and
interpret patterns or trends. Second, they help us directly test our hy-
potheses. Researchers use statistical models to evaluate whether there
are significant relationships between variables as we expect, or whether
observed patterns are random noise in the data. Last, they help make
predictions. Based on the relationships identified in the data, models can
predict future outcomes or behaviors.

77



When we use theory and generate hypotheses, we can translate our
hypotheses into statistical models to test. These are derived from,
and quite similar to our statistical hypotheses (see Section 2). We are
attempting to create a model of real-world phenomenon. Perhaps the
best way to conceptualize a model is to think of outcomes and their
explanations. Given some outcome of interest, we can provide some
model or explanation for individual differences in the outcome. But,
our models may not perfectly explain the outcome and, thus, we must
consider some degree of error. Formally:

outcome = model + e,

For example, consider the following theory proposed by Schneidman
(1998): suicide is caused by psychache (unbearable mental pain). Even if
Shneidman was right, and this was truly how suicide operated in the real
world, we simply cannot confirm this. As a result, others may disagree
on the answer to ‘what causes suicide?’ There are many potential expla-
nations and subsequent models. Consider the following three possible
explanations:

1. Researcher 1: as pyschache increases, suicide risk increases

2. Researcher 2: as social connectedness decreases, suicide risk in-
creases

3. Researcher 3: presence of specific genetic variant (SNP)
Chr13:rs34399104 causes suicide

Each researcher could collect data to test how well their hypothesis
fits the data that they collect. Each hypothesis can be represented as
a model that is statistically testable. Researcher 1, who believes that
knowing someone’s score on psychache should allow us to predict their
suicide risk, may model the data as:

Yrisk = xpsychache + €;

Above the outcome is suicide risk. The researchers believes that
someone's degree of experiencing psychache can explain their degree
of suicide risk. Because it's not a perfect explanation, there is some error
incorporated. If the model explains a lot of the outcome, error will be
low. If it doesn't, error will be high.
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Researcher 2, who believes that people high on social connectedness
should have less suicidal ideations than those with low social connect-
edness, may model the data as:

Yideations = Lconnectedness + €;

Researcher 2 believes that if someone dies by suicide, then the
Chr13:rs34399104 (Docherty et al. (2020)) gene should be present in a
biopsy. They may model the data as:

Ysuicide = TChri3:rs34399104 T €;

Also, the researcher would propose that the probability of someone
dying by suicide, given the presence of Chr13:rs34399104 is 1.00, or:

p(death | Chrl3 : rs34399104) = 1.00

So, we have three suicide researchers all proposing a different explana-
tion for various aspects of suicidality. Thus, each researcher would collect
slightly different data and analyse it differently. If their model fits the
data well, it provides support for the hypothesis and theory. If it does
not fit the data well, it likely does not accurately represent the real-world
phenomenon of interest. For example, if researcher 3 collected genetic
data and the presence of the hypothetical gene did not lead to suicide in
some individuals, it would indicate a poor model fit. Thus, their hypoth-
esis is not supported and the theory should be adjusted or scrapped.

Models can be simple or complex. Again, the research question and
hypotheses precede the research design-and, subsequently, the model.

If you are still having difficulty conceptualizing a model, perhaps it's
best to think about each individual and their data. The data will be the
function of our model plus some error. Typically, we have their observed
score and predicted score on some variable. Our predictions, however,
are not always accurate. Instead, there is some degree of error. We may
express it as:

y; = model + error

Again, if our model-a proposed explanation on how the data should fit
together—does a good job, errors will be relatively low. If our model does
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a bad job, the errors will be relatively low. A basic example may help
further understand models.

6.1 A Basic Model

Let’s try to model the mean height of psychology professors (in centime-
ters). You cannot measure all the psych professors in the world. Instead,
you go to the Arts and Sciences Building at Grenfell Campus and
measure the heights of four of your psychology professors. You get the
following data.

Name Height

Tyler | 181
Steve | 190
Jenny [ 173
Cindy | 158

We can represent our model as:
Y = X + e

Here: y, presents the height of professor i, X represents some constant
or model that we will use to try and predict a professor’s height; and
e;, the error, represent the difference between the professor and the
constant. Errors are also sometimes referred to as residuals. Note that
each participants, or experimental unit, gets a residual. Here, professors—
our experimental units—gets their heights—out variable-measured.

We can assess how well the model fits with the data we collected. For
our model, we can try to calculate how large our residuals (e;) are, as
these represent the model error. Recall that a model that does a poor
job will have more error compared to a model that does a good job.

Let’s propose two models: 1) where z = 150 and 2)z = 180. Let's calcu-
late the residuals for each professor for each model.

Model 1:
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And the error for Tyler, who is 181cm, would be:

181 = 150 — e, 50,

Which means that:

€yyter = 150 — 181 = —31

Here are the residuals for the other professors:

Name Height Error

Tyler | 181 | =31
Steve | 190 | -40
Jenny | 173 | -23
Cindy | 158 -8

Let’s do the same thing for Model 2:

An the errors are:

Name Height Error

Tyler | 181 —1
Steve | 190 | -10
Jenny | 173 7
Cindy | 158 22

Simply inspecting the errors, we can see that the errors are on average
higher for Model 1 compared to Model 2. Thus, Model 2 seems to be a
better fit to the data. If you were asked to predict a professors height,
you would be more accurate to guess 180cm versus 150cm.

Are these the best guess, though? While both 150 and 180 may seem
like good guesses, in this simple scenario, the average height of the
professors—the mean (z)-will be the best fit for the data. The average
height of these professors is 175.5cm. Thus, the best model that contains
only one piece of information is:

81



Where z, is the mean of the group.

In the above model, | explicitly state that we only have one piece of
information. However, some models will have more then one piece of
information. For example, imagine we model using two pieces of infor-
mation: the mean height of professors and the gender of the professor.
We will now have two pieces of information to model: z;, and gender.
We will also still have our error/residuals. Compare the errors of both of
these models.

Model using mean only:

Name Height Error

Tyler | 181 | -5.5
Steve | 190 |-14.5
Jenny | 173 2.5

Cindy [ 158 | 17.5

Model using mean height and gender:
Y; = T; + gender(zy;) + ¢;

Where z,; is someone’s score on gender. We will revisit this later, but
women will get a score of 0 on this variable, and men a score of 1. Let’s
assume men will be on average 20cm taller than women, meaning in the
above model, gender = 20. Also, let's make the mean of the model the
mean height for women, which is 166cm. Replacing the above equation
with this new information, the following model is derived:

Where z,i is the gender variable for participants (0 for women and 1 for
men). Thus, the equation will look differently for men versus women.

For women:

y; = 166 + 20(0) + ¢; = 166 + ¢,
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For men:
y; = 166 +20(1) +¢; = 166 + 20 + ¢,

The following are the new errors:

Name Height Gender Error

Tyler | 181 Male 5
Steve | 190 Male -4
Jenny | 173 |Female| -7
Cindy | 158 |Female| 8

As can be seen, the errors seem smaller. However, seeming smaller isn’t
quite scientific. Is there a better way?

6.2 Deviations

The astute reader may have noticed something peculiar. How can we tell
how good a model fits the data? Perhaps we could add the residuals.
Let’s do this for our model that uses only the mean of professors’ heights
(175.5cm) to predict an individual professor’s height and compare to the
model that uses 150cm. As a refresher, here’s the data:

Name Height Error175.5cm Error150cm

Tyler | 181 5.5 31
Steve | 190 14.5 40
Jenny [ 173 -2.5 23
Cindy | 158 -17.5 8

If we sum all the errors up across all our data when consider the mean,
we get:

D e, =55+145+ (—2.5) + (—17.5) =0
Let's compare that to the errors for the 150cm model:

D e =—314+—-40+ 23+ -8 =—103
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Thus, the mean model seems a better fit than the 150 model; the
residuals are closer to 0. As noted above, for this simple model with one
piece of information, the mean will always provide the best estimate ()
and have the residuals sum to 0:

n

Zei:O

i=1

Other more complex models will have this property. But some may not.
Often, the squared residuals are used in place of the absolute residual.
Variance and standard deviation are directly related to this.

6.2.1 Variance and Standard Deviation

We may effectively model the fit of our mean model with the variance
and standard deviation. These are extremely important in statistics so
it's imperative to become familiar with them.

Above we calculated the the deviation of each score. The variance is, in
essence, the average squared difference between a score and its mean.

N —\2
0_2 _ Zi:]_ (xl o .’L')
N

But for a sample, our equation is (see Section 4):

N —\2
82 _ zizl ('rl_x)
N—1

This equation simply means we add up all the squared differences
between a score and the mean (here this is the residual) and divide by
the number of scores. So, the squared deviations are:

Name Error Squared

Tyler | 5.5 30.2
Steve | 14.5 | 210.2
Jenny | =2.5 6.2

Cindy [ -17.5| 306.2
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We then add up the squared deviations, 30.2 + 210.2 + 6.2 + 306.2 =
552.8. And divide by the number of scores (with sample adjustment to
N —1),4—1=3, to get:

, 2o (@—%)" 302+210.2+6.2+3062 5528

— :1 4.2
o N_1 41 84.21

Thus, the variance of the heights of psychology professors is 184.27. The
standard deviation is simply the squared root of the variance:

Yo (@ — )
s = || Sl = VIBL2T = 13.58

While you might think that the standard deviation (SD) is the average
absolute difference between a score and the mean, it is not. For
example, the SD of our heights is 13.58. But the average deviation is, in
fact, BB 2SHIIT] _ 13 33 |t is most likely helpful to think of the
variance as the average squared deviation and the SD as the root of the
variance.

6.3 Try This

Instead of using the mean in the above model, use a value of 190cm.
Our new model would be:

Calculate the errors, variance and SD using this new model. Was the
variance higher, the same or lower?

Which model seemed better? The one using the mean or 190cm?
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O Answers

Name Height NewDeviation NewSquaredDeviation

Tyler | 181 -9 81
Steve | 190 0 0
Jenny | 173 =17 289
Cindy | 158 -32 1024

The sum of these new deviations is 1394.
The variance of these is 464.67.
The SD is 21.56.

When you compare the errors for one model, which uses the mean
(175.5cm) as the best estimate of professors’ heights versus the
model that uses 190cm, we determine that the mean is the best
model for the data. It has smaller errors/residuals. While the modeling
the data with a mean is a simple model, there are more complex or
advanced ways to model data.

6.4 Advanced Models

While above we have simply modeled a mean, later chapters will build
up to more advanced models, such as:

Y; = By + ;81 + To; 8y + T3, 83 + To; 3,84 + €

Don’t be intimidated, this is a whole lot like your classic high school’s
y = mx + b, with some intercepts and slopes. More to come. For now,
a brief overview of some potential models will do. | will note that many
common statistically models fall under the broader umbrella of general
linear models (GLM). Some common types of statistical models in psy-
chological research that will likely encounter in the literature include:

1. Linear regression models
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These assess the relationship between one or more independent vari-
ables and a continuous dependent variable. For example, predicting
levels of anxiety based on hours of sleep.

2. Analysis of Variance (ANOVA)

This model compares the means of different groups to determine if they
are significantly different from one another, often used in experimental
studies.

3. Structural equation modeling (SEM)

SEM is a more complex statistical model that can evaluate multiple
relationships between variables simultaneously, including latent (unmea-
sured) variables.

6.5 Conclusion

Statistical models are essential for drawing conclusions about psycholog-
ical phenomena, helping researchers identify patterns, test theoretical
models, and inform practice. Our models are derived from our hypothe-
ses. Each analysis in your hypothetical toolbox will allow you to model
data in appropriate ways to test you hypotheses. We will revisit the idea
of models throughout each chapter that follows.

6.6 Practice Questions

1. Calculate the mean, variance, and standard deviation for both the
height (in cms) and weight (in kgs) of these NHL players.

Player Height Weight

Connor McDavid | 185 99

Auston Matthews | 190 93
Sidney Crosby 180 91
Alex Ovechkin 191 108
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2. Write out the model for NHL height.

3. What are the e, values for each player when modeling their height?

6.7 Answers

1.
V1
Mean Height 186.725000
SD Height 5.148058

var Height 26.502500
Mean Weight 97.725000
SD Weight 7.587435
var Weight 57.569167

2. Write out the model for NHL height.

helghtz = Eheight + €;

3. What are the e, values for each player when modeling their height?

Player Height e_i

Connor McDavid | 185 |-1.3
Auston Matthews | 190 | 3.8
Sidney Crosby 180 |[-6.7
Alex Ovechkin 191 4.3
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7 NHST

Null hypothesis significance testing (NHST) is a controversial, yet widely
used approach to testing hypotheses. It is likely the most commonly-
used approach in psychological science. Simply, NHST begins with an
assumption, a hypothesis, about some effect in a population. Interest-
ingly, the hypothesis is that there is no effect or relationship. More to
come on this. Regardless, data is collected from a sample that is believed
to be representative of that population (see Section 4). Should the data
not align with the null hypothesis, it is taken as evidence against it. There
are several concepts related to NHST that need to be addressed to
facilitate your understanding.

7.1 p-values

Prior to exploring p-values, let's ensure you have a basic understanding
of probability notation. | recommend you Section 5 first. Back to the
notation...:

p(z)
which would indicate the probability of x.

For example, the probability of flipping a fair coin and getting a heads
is .5 (p(heads) = .5), indicating a probability of getting a heads. Proba-
bility ranges from 0 (no chance), to 1 (guarantee). For example, the
probability that you, the person reading this, is a Grenfell student is
high. Thus, my best guess right now that you are a 3950 student is that
p(3950student) = .95. Hypothetically, if | could survey everyone who has
read this sentence, | would expect 19 out of 20 of them (95%) to be a
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Grenfell student. | would expect one of them not to be (e.g., someone
randomly stumbled on this page...lucky you!).

Additionally, you must understand the notation for a conditional proba-
bility:

p(z | y)

which would indicates the probability of z, given we know y occurred/
is true.

For example, what if | informed you that the coin in the previous
example is not a fair coin. The original probability will only be accurate
if the coin is fair p(heads | faircoin) = .5. However, with the new
information, the probability of getting heads is most certainly not .5,
p(heads | unfaircoin) # .5. Perhaps our coin is biased to land on heads
more often than tails. Thus, we would expect that p(heads) > .5.

The reverse of a conditional probability is not always equal to the original
conditional probability. That is:

p(x|y) #py|z)

Consider the following: what is the probability that someone is
Canadian, given that they are the prime minister of Canada:
p(Canadian | PrimeMinister)? While not legally required, it is quite
likely that if someone is the prime minister of Canada, they are Canadian.
At the time of writing, Mark Carney is PM of Canada; he was bornin NWT
and grew up in Alberta. Thus, p(Canadian | PrimeMinister) = 1.00.

Do you think this is equal to the probability of someone being
the Prime Minister of Canada, given that they are Canadian?:
p(PrimeMinister | Canadian)? | would argue that the former is p =
1.00, while the later is not. In fact, the later can be calculated. Given there
are about 41,000,000 Canadians, and there is only one current Prime
Minister, than the probability that someone is Prime Minister, given that

they are Canadian p(PM | Canadian) = o5 = -00000002. So:

e p(Canadian | PrimeMinister) = 1.00
e p(PrimeMinister | Canadian) = .00000002
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It is imperative understand conditional probability and that the inverse
conditional probability is not necessarily different.

7.1.1 A Major “Given”

A key feature of NHST is that the null hypothesis is assumed to be
true. Given this assumption, we can estimate how likely a set of data are.
This is what a p-value tells you.

O Definition

A p-value is the probability of obtaining data as or more extreme
than you did, given a true null hypothesis. We can use our notation:

p(D | Hy)

Where D is our data (or more extreme) and H,, is the null hypothesis.

When the p-value meets some predetermined threshold (i.e., a priori
criteria), it is often referred to as statistical significance. This threshold
has typically been a = .05-there are debates over whether this is an
arbitrary threshold or not (Cowles & Davis, 1982). Should data be so
unlikely that is crosses the threshold (i.e., p < .05), we take it as evidence
against the null hypothesis and reject it. If it is not below the threshold
(p > .05), we fail to reject it.

Note that we do not accept the null hypothesis. Liken this to a courtroom
verdict, which is that someone is guilty or not guilty. A not guilty verdict
does not mean that someone is innocent, it means there is not enough
evidence to convict. Likewise, failing to reject the null does not mean
the null is true, rather, there's not enough evidence to conclude that it
is false.

...beginning with the assumption that the true effect is zero (i.e.,
the null hypothesis is true), a p-value indicates the proportion of test
statistics, computed from hypothetical random samples, that are as
extreme, or more extreme, then the test statistic observed in the
current study.
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— Spence & Stanley (2018)

or, stated another way:

The smaller the p-value, the greater the statistical incompatibility
of the data with the null hypothesis, if the underlying assumptions
used to calculate the p-value hold. This incompatibility can be inter-
preted as casting doubt on or providing evidence against the null
hypothesis or the underlying assumptions.

— Wasserstein & Lazar (2016)

Simply, a p-values indicates the probability of your, or more extreme, test
statistic, assuming the null: p(data | null). When we consider the results
of our analyses, we can differentiate reality~how the world truly oper-
ates—with our research results—how the world should operate according
to our results. Despite not knowing how the world truly operates, they
should sometimes align. For ease, consider the following table:

Reality

No Effect (HO Effect (H1 True)
True)
Research No Effect (HO | Correctly Fail to | Type | Error («)
Result True) Reject HO
Effect (H1 True) | Type Il Error (B) | Correctly Reject
HO

When we conduct NHST, we are assuming that the null hypothesis is
indeed true, despite never truly knowing this. As noted, a p-value
indicates the likelihood of your or more extreme data given the null.

If the null hypothesis is true, why would our data be extreme?

In inferential statistics we make inferences about population-level para-
meters based on sample-level statistics. For example, we infer that a
sample mean is our best estimate of a population mean:

fp=x



Where: - i is the estimate of the population mean and - z is the sample
mean

In, NHST, we assume that population-level effects or associations (i.e.,
correlations, mean differences, etc.) are zero, null, nothing. However,
samples are only estimates of populations. Thus, if we sampled from a
population whose true effect or association was 0 an infinite number of
times, we would not always get a sample statistic of 0 (i.e., our true null
effect) because of random variations in our sample. Instead, our sample
statistics would form a distribution around the population parameter.

To help your understanding, let’s first consider the 1Q scores of a popu-
lation—say residents of Corner Brook, NL. We will assume we know the
true mean (u = 100) and standard deviation (o = 15). If we took 1,000
samples of size 20 from this population with x = 100 and o = 15, we may
get a distribution that looks something like:
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The above shows the distribution of the means of 1,000 samples from
the population where . = 100 and o = 15. Although not quite an infinite
number of samples, | hope you get the idea that the sample statistics
form a normal distribution around the true population parameter. The
red shaded region shows the two tails of this distribution that encompass
the most extreme 5% of the samples (2.5% per tail). That is, 5% of the
samples are in the tails (2.5% in each tail). These extreme 5% fall either
below 94.75 or above 105.54. Thus, there is a low probability sampling
from the population, measuring their IQ, and having the mean be in that
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red region. Only 5% of the samples are at or beyond this number. That
data is quite unlikely given a true value of 1;, = 100.

While we used simulated data from a hypothesized population, math
people have derived formulas that represent the approximate shape of
the curve for “infinite” samples. These are sometimes called probability
density functions. We don’t need to know the calculus behind it, but
the PDF for mu = 100 and o = 15 when sampling 20 people from the
distribution is:

Density

85 9 95 100 105 110 115
1Q

In the above, the extreme 5% of the PDF is associated with a sample
mean lower than £ = 92.98 or higher than z = 107.02; that is, the extreme
2.5% of samples have a mean 1Q that is larger higher than £ = 107.02 or
2.5% have sample means lower than z = 92.98.

To hammer home the concept, let's conduct a one-sample t-test on the
following sample, assuming a population mean of 100. We obtain the

following data:

Person IQ

1 94.43
2 130.89
3 97.97
4 89.43
5 119.68
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Person IQ

6 106.44
7 129.16
8 115.69
9 81.65
10 93.58
11 106.19
12 1124.06
13 |117.38
14 108.2
15 |127.77
16 1100.86
17 91.02
18 |113.98
19 1105.75
20 86.26

This is a sample mean of 107.0199. The following are the results of a
formal one-sample t-test.

Effect sizes were labelled following Cohen's (1988)
recommendations.

The One Sample t-test testing the difference between df pop2$IQ
(mean = 107.02)

and mu = 100 suggests that the effect is positive,
statistically not

significant, and small (difference = 7.02, 95% CI [100.00,
114.04]1, t(19) =

2.09, p = 0.050; Cohen's d = 0.47, 95% CI [-1.90e-05, 0.92])

These results suggest the a sample mean of z = 107.00 drawn from a
population with mean p = 100 results in p = .05. What does this mean?
How would you interpret this p-value? Try to link it to the distribution of
samples means from above.
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O Think about it

The p-value indicates that given a true null hypothesis (here that the
population mean is 100), we would expect a sample mean as big or
bigger than ours only 2.5% of the time.

In the distribution of sample test statistics above, this aligns with the
fact that 5% of the statistics (2.5% in each tail) were at least 7.02 away
from the mean. 2.5% is at 100 + 7.02 = 107.02 and beyond, the the
other tail would be 100 — 7.02 = 92.98 and below.

Density

85 90 95 100 105 110 115
1Q

Figure 8: The red regions are those <92.98 and >107.02.

Because the probability of this data is quite low (i.e., we obtained an
extreme statistic), given H,,, we often reject the null hypothesis. Our data
is very unlikely given a true null hypothesis, therefore we reject the null.

7.1.2 Why is o = .05?

You have often looked for “p < .05” to map onto your a priori alpha level
(a = .05). Why though? The magnitude of the tails is arguable arbitrary,
but has been set to a standard of 5% (corresponding a = .05) since the
early 20th century (Dahiru, 2008), which is a further criticism of NHST.
However, we set our o threshold/criteria, and as demonstrated in the
previous paragraph, our «a level influences the extremeness needed in
our data to consider it statistically significant. Imagine we wanted to
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make our criteria more conservative or stringent, such that a = .01. Here,
our data would need to be more extreme to fit the criteria. What do you
think would happen to the red shaded region in the above graph? The
red regions would shift outward and our critical values would be larger
in absolute magnitude. In this case, our graph would be:

Density

85 90 95 100 105 110 115
Q

The dark red region represents the extreme 1% of the distribution (0.5%
per tail). The red region is where the original regions were for a =
.05.The proportion of samples in the red region is? You guessed it, 4%.
Remember, these distributions are for a samples of n = 20. The critical
regions and subsequent statistics required to be in those regions will
differ based on sample size.

So, we set the criterion of «a a priori and our resultant p-value lets us
decide if our data are probable (or not) given H,,. If it's lower than our
criterion we can reject H,, suggesting only that the population effect
is probably not zero. It is often called statistically significant (Spence &
Stanley, 2018). Otherwise, if our p-value is larger than our criterion, we
decide that our data is not that unlikely given a true null, and fail to reject
that H,. Here, it's plausible that the true population parameter is O (but
not confirming that the parameter is 0).

In short, p-values are the probability of getting a set of data or more
extreme given the null. We compare this to a criterion cut-off, alpha.
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If our data is very improbable given the null, so much that is is less
than our proposed cutoff, we say it is statistically significant.

— Spence & Stanley (2018)

Importantly, rejecting the null can happen when the null is, in fact true.
In this case we have committed a type 1 error.

7.1.3 p-value Misconceptions

Many of these misconceptions have been described in detail elsewhere
(e.g., Nickerson (2000)). We will revisit only some misconceptions.

1. Odds against chance fallacy

The odds against chance fallacy is when a p-value is interpreted as the
probability that the null hypothesis is true. For example, someone might
conclude that if their p = .04, there is a 4% chance that the null hypothe-
sis is true. You have learned that p-values indicate p(D | H,) and that you
cannot simply flip the conditional probabilities: p(D | Hy) # p(H, | D).
The p-value tells you nothing about the probability of a null hypothesis
other than it is assumed true. Under a NHST p-value, p(H,) = 1.00.

Cohen (1994) outlines a nice example wherein he compares p(D | Hy)
to the probability of obtaining a false positive on a test of schizophrenia.
Given his hypothetical example, the prevalence of schizophrenia and
the sensitivity and specificity of assessment tests for schizophrenia, an
unexpected result (a positive test) is more likely to be a false positive
than a true negative.

If you want p(H, | D), you may need another route such as Bayesian
Statistics.

2. Odds the alternative is true

In NHST, no likelihoods are attributed to hypotheses. Instead, all p-
values are predicated on p(H,) = 1.00. It is assumed that the null is true.
Thus, statements such as ‘1 — p indicates the probability H, is true’ is
false.

3. Small p-values indicate large effects
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This is not the case. p-values depend on other things, such as sample
size, that can lead to statistical significance for minuscule effect sizes.
For example, consider the results of the following two statistical results,
where both analyses results in the same statistic: r = .1:

Result from test 1:

‘ 0.1 ‘ 0.001544 \

Result from test 2:

‘ 0.1 ‘ 0.3222 \

In the above, the two tests have the exact same effect size and corre-
lation statistics, » = .1. However, the p-values vary substantially. Thus,
effect size does not map directly onto p-value. One major other consid-
eration is sample size. For extremely large sample sizes, a small effect
size may have a small p-value (i.e., minor effect is statistically significant).

For extremely small sample sizes, a large effect may have a large p-value
(i.e., a major effect is not statistically significant). The following repre-
sents the relationship between p-value and sample sizes for a correlation
of r = .1:
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p-value
OO0000000000000000000
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A p-value can be quite different for the exact same correlation coeffi-
cient, depending on sample size. More to come. Regardless, it is
important to not interpret p-values alone. Effect sizes and confidence
intervals are much more informative.

7.2 Power

Whereas p-values rest on the assumption that the null hypothesis is
true, the contrary assumption, that the null hypothesis is false (i.e., an
effect exists), is important. Many of us would not be doing research if
we didn't think a true effect existed (e.g., the drug reduced depression;
being connected reduced suicide risk). Indeed, the assumption that an
effect exists is also important for determining statistical power. Statistical
power is defined as the probability of correctly rejecting the null
hypothesis given an true population effect size and sample size, or
more formally:

Statistical power is the probability that a study will find p < alpha IF
an effect of a stated size exists. It's the probability of rejecting H_O
when H_1 is true.

— Cumming & Calin-Jageman (2024)

To help us understand statistical power, let’s visualize two hypothetical
distributions. One where the null is true (i.e., the null distribution of test
statistics), and another where the alternative is true (i.e., the alternative
distribution of test statistics).
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This plot illustrates the concept of statistical power and has two distri-
bution and two dotted vertical lines. The red curve represents the null
hypothesis (H,) distribution, which assumes no effect, while the blue
curve represents the alternative hypothesis (H;) distribution, which as-
sumes an effect (here, with a mean shifted to 3). The two dotted vertical
lines represent the critical values for statistical significance on the null
distribution. The light red shaded area under the null distribution beyond
the critical value represents the Type | error rate (), or the probability of
rejecting the null hypothesis when it is true. We have already seen how
adjust our test criteria can shift those red regions (e.g., a = .05 versus
a = .01).

In contrast, the dark blue shaded area under the alternative distribution
to the left of the critical value of the null distribution represents the Type
Il error rate (), or the probability of failing to reject the null hypothesis
when it is false. The light blue shaded region under the alternative
distribution the the left of the critical value reflects the statistical power
(1 — B), which is the probability of correctly rejecting the null hypothesis
when it is false, thus detecting a true effect. 1 — a represents the proba-
bility of correctly failing to reject the null hypothesis when it is true, 1 —
B represents statistical power, a;/2 marks the Type | error probability in
each tail, and g indicates the probability of making a Type Il error.

We can conclude from this definition that if your statistical power is low,
you will not likely reject H, regardless of if there is a population-level

101



effect (i.e., H; # 0). As will be demonstrated, under-powered studies
are doomed from the start. Conversely, if a study is overpowered (i.e.,
extremely large sample size), you can get a statistically significant result
for what might be a infinitesimal or meaningless effect size.

O Note

You are likely familiar with the symbol r for a correlation. This is the
sample statistic. Before proceeding to the next example, please note
that you will often see the symbol ‘rho’, which is represented by
the Greek symbol p (it's a blend of r and o). This is the population
parameter of a correlation. This is the not the same as a p-value, which
is represented by the letter p. It may get confusing it you mix up these
symbols, so be sure you know the difference between the two.

Consider a researcher who is interested in the association substance use
(SU) and suicidal behaviors (SB) in Canadian high school students. They
design a study and use the NHST framework. Under this framework, they
set the following hypotheses:

® HO . p == O
e H:p+0
Let's assume that the true correlation between SU and SB is p = .3; the

researchers do not know that this is the true value. The population data
plotted on a scatterplot might look like this:

Substance Use

Suicidal Behaviors
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Every faint gray dot represents a student. Their score on SU is on the y-
axis, while their score on SB is on the x-axis. The plot looks cloudy toward
the center because most student score in the middle on both variables,
with fewer scoring on the extremes. Remember, there are 100,000 dots
there! We can see a trend where students with higher SU also have
higher, on average, SB. So, it appears that as substance use increases,
so do suicidal behaviors. Although we aren’t so omniscient in the real
world, the population correlation here is p = .3.

However, before conducting the study, the researcher conducts a power
analysis to determine an appropriate sample size required to adequately
power their study. They want to have a good probability of rejecting
the null, if it were false (here, we know this is the case). To calculate the
appropriate sample size, they will require: 1) « criterion level, 2) desired
power (1 — ), and 3) hypothesized effect size. The researcher uses the
standard for « criterion and power. Thus, they have: 1) a = .05, 2) 1-
B = .8, and they estimate the true effect based on the literature to be
3) p = .300. Although we know the population correlation and that the
researcher has accurately estimated the population effect, researchers
may not accurately estimate the population effect size. In real-world
research we would need to find a good estimate of the effect size, which
is typically through reading the literature for effect sizes in similar popu-
lations. Power can be calculated many ways such as using the software R
or GPower. Using R, the researcher uses the pwr package to conduct their
power analysis. This package is very useful; you can insert any three of
the required four pieces of information (alpha, power, estimated sample
size, and sample size) to calculate the missing piece. More details on
using pwr are below. For our analysis, we get:

approximate correlation power calculation (arctangh
transformation)

n = 84.0736
r=20.3
sig.level = 0.05
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0.8
two.sided

power
alternative

The results of this suggest that we need a sample of about 85 people
(rounding up from n = 84.07; rounding down would mean power would
drop below .8) to achieve our desired power (1 — 3 = 0.8), using our
known population correlation (p = .3) and a = .05.

What does this mean? It means that if the true population correlation
was p = .3, then about 80% of all hypothetical studies using a sample
size of n = 85 drawn from this population will yield p < a.

We can create a histogram that plots the results of many random studies
(n = 85)-10,000 to be exact-drawn from our population to determine
which meet p < «a. But first, | will show you what the distribution of test
statistics would look like for 10,000 samples of size 85 drawn from the
null distribution.
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So, let’s now replace the null distribution histogram with the alternative
distribution histogram. Note that the red regions will not change; these
are critical values under the null distribution.
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This graph represents the distribution of correlation coefficients for each
of our random samples, which were drawn from our population. Notice
how they form a seemingly normal distribution around our true popula-
tion correlation coefficient, p = .300. Although it may seem normal, it is
actually skewed because of the bounds of the correlation (i.e., =1 to 1).

The red lines and shaded regions represent correlation coefficients that
are beyond the r = .215 cut-off, which represent the extreme 5% (2.5%
per tail) of sample under a true null and, thus, would result in p < .05.
The blue line represents the true population correlation coefficient (p =
.300). Just how many samples scored at or beyond the critical correlation
value of r = .215? Think about it before proceeding.

The results of our correlations suggest that 8016 correlation coefficients
were at or beyond the critical value. Do you have any guess what pro-
portion of the total samples that was? Recall that power is the probability
that any study will have p < a. Approximately eighty percent (0.8016%)
of these studies met that criteria: this was our power! Why is it 0.8016
and not 80% exactly? Remember, power refers to a hypothetically infinite
number of samples drawn from the population, for any given sample
size, effect size, and a. Had we drawn oo samples, we would have 80%
having p < a. Also, recall that we rounded up to 85 people per sample,
not 84. Having more people will result in higher power, holding all other
things constant. Rounding down would have lower power below 1 — 5 =
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.8 and a sample size of n = 84.07is impossible. Thus, rounding up is the
best course of action.

What if we couldn’t recruit 85 participants?

Perhaps we sampled from one high school in a small Canadian city and
could only recruit 32 participants. How do you think this would affect our
power? First, smaller sample sizes give less precise estimations of popu-
lation parameters under the alternative distribution (i.e., the histogram
above of distribution of sample statistics may be more spread out).

Second, this also influences our critical region of the null distribution;
the red regions shift outward. That is, a lower sample size also increase
variability in the distribution of sample statistics for the null distribution,
as well. This means that the extreme 5% will be further out. Overall, both
of these reduce power.

Let’s rerun our simulation with 2,000 random samples of n = 32 to see
how it affects out power. Remember, the true population effect is p =
3. We can plot the resultant correlation coefficients. Note that the
critical correlation coefficient value for n = 32 is more narrow for n = 85
compared to n = 32. The new critical value is r = 349 (compared to r =
215). The following figure represents the 2,000 samples:
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Hopefully, you can see that despite the distribution still centering around
the population correlation of p = .3, it has spread out more. We are less
precise in our estimate. Furthermore, the red region (critical r region) is
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shifted outward due to a smaller n. This would mean that fewer of the
samples result in correlation coefficients that fall in the red regions and
be statistically significant (i.e., power is lower). Would a formal power
calculation agree? First, let’s find out how many studies resulted in p <
a = .05 and then do a formal power analysis to determine if they are
equal.

Our results suggest that of the 10,000 simulated studies, 3982studies
yielded statistically significant results (3982/10000 = 39.8%). Would our
power align?

Formal Power Analysis

approximate correlation power calculation (arctangh
transformation)

n =32
r=20.3
sig.level = 0.05
power = 0.393231
alternative = two.sided

Whoa! Power was 1 — 8 = .3932 (i.e., 39.32% of samples). Close enough!

Let's take it one step further and assume we could only get 20 partici-
pants. This is the plot of the resultant correlation coefficients. Note that
the critical correlation coefficient value for n = 20 is larger than for n =
32 (remember that the null distribution or samples would be spread out
more for smaller sample sizes). The new critical value is r = 444. The
following is adjusted for 20 participants:
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Hopefully, you can see that despite the distribution still centering around
our population correlation of .3, the red regions are further outward than
the previous two examples. Again, let's see how many studies resulted
in p < a = .05 and then do a formal power analysis to determine if they
are equal.

A total of 2585 studies yielded statistically significant results
(2585/10000 = 25.8%). More, you may even notice that in the previous
figure, a statistically significant result occurred in the opposite direction
(look in the left red region). That is, some results would suggest a
negative correlation despite the true parameter being positive. Would a
formal power analysis align?

approximate correlation power calculation (arctangh
transformation)

n = 20
r=20.3
sig.level = 0.05
power = 0.255924
alternative = two.sided

So, out of 10,000 random samples from our population, 25.85% had
p < a = .05 and our power analysis suggests that 25.56% would. Again,
given infinite samples, there would be 25.59237...% with p < a = .05.
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In sum, as sample size decreases and all other things are held constant,
our power decreases. If your sample is too small, you will be unlikely to
reject H, even if a true effect exists. Thus, it is important to ensure you
have an adequately powered study. Plan ahead. Otherwise, even if a
population effect exists, you may not conclude that through NHST'.
Or, maybe a non-NHST approach is best.

7.2.1 Increasing Power

Power is the function of three components: sample size, hypothesized
effect size, and alpha. Thus, power increases when:

1. The hypothesized effect is larger;
2. You increase your alpha level (i.e., making it less strict; .1 versus .05).
3. You can collect more data (increase n);

This relationship can be seen in the following graphs:

alpha = .05.
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alpha =.01.
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7.2.1.1 Effect Size

As the true population effect reduces in magnitude, your power is
also reduced, given constant n and «a. So, if the population correlation
between substance abuse and suicidal behaviors was p = .1, we would
require approximately n = 782 to achieve power of 1 — 3 = .8. In other
words, 80% of hypothetically infinite number of samples of n = 782
would give statistically significant results, p < a, when p = .1.

If the population correlation was p = .05, we would require approxi-
mately n = 3136 to achieve the same power. This is the basis of the
argument that large enough sample sizes result in statistically significant
results, p < «, that are meaningless (from a practical/clinical/real world
perspective). If p = .05, which is a very small and potentially meaningless
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effect, large samples will likely detect this effect and result in statistical
significance. Hypothetically, 80% of the random samples of n = 3136 will
result in p < a = .05 for a population correlation of p = .05. Despite the
statistical significance, there isn't much practical or clinical significance.
Statistical significance # practical significance.

Ways to Estimate Population Effect Size

There are many ways to estimate the population effect size. Here are
some common examples, ordered by recommendation:

1. Existing Meta-Analysis Results: Meta-analyses compile and com-
bine results from multiple studies to give a more accurate estimate of
the population effect size. By aggregating data across various studies,
meta-analyses reduce bias and provide a more stable estimate. |
recommendation using the lower-bound estimate of the confidence
interval (Cl) from the meta-analysis. This is a more conservative
approach that accounts for uncertainty and publication bias, which
helps avoid overestimating the true effect size.

2. Existing Studies with Parameter Estimates: \When no meta-analysis
is available, individual studies reporting effect size estimates can be
used. These should come from studies with similar designs, popula-
tions, or theories. | recommend using the lower-bound estimate of
the confidence interval presented in the study or halve the reported
effect size from a single study to ensure a more conservative estimate.
This is because single studies are more prone to sampling variability
and biases like publication bias. By halving the effect size or using
the lower bound, you reduce the risk of overestimating the true
population effect size.

3. Smallest Meaningful Effect Size Based on Theory: Theoretical
frameworks can suggest the smallest effect size that would be
considered meaningful or practically important in your study. This
might come from expert consensus or previous theoretical work that
identifies thresholds for meaningful differences. | recommend that
you choose the smallest effect size that is theoretically or practically
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significant. This ensures your study has enough power to detect
meaningful effects, even if they are small.

4. General Effect Size Determinations (Small, Medium, Large): If no
specific guidance is available, general benchmarks for effect sizes can
be used:

e Small: Cohen’s d = 0.2, Pearson’s r = 0.1
¢ Medium: Cohen’s d = 0.5, Pearson’s r=0.3
¢ Large: Cohen’s d = 0.8, Pearson’s r = 0.5

| recommend choosing the general effect size that aligns best with your
theory. If a strong relationship is expected, use a larger effect size; if
subtle, use a smaller one. These general benchmarks provide a starting
point when no other data is available. They help design studies with
realistic expectations for effect sizes, even without prior research.

7.2.1.2 o level

Recall that the alpha level (commonly set at .05) represents the threshold
we choose to determine statistical significance. Specifically, it is the
probability of committing a Type | error-rejecting the null hypothesis
when it is actually true. In other words, it defines the “extreme” region of
our null distribution, where we would reject the null hypothesis in favor
of the alternative hypothesis.

Reducing Alpha and Its Consequences

When we reduce our alpha level (e.g., from .05 to .01), we are essentially
making our criterion for rejecting the null hypothesis more strict. This
means that fewer observed outcomes will fall into the “extreme” region,
which is now smaller. Visually, this reduction in alpha shrinks the size
of the red areas in a power curve (those areas representing where we
reject the null hypothesis under the alternative distribution). These areas
are associated with detecting true effects, so shrinking them decreases
the likelihood of finding a significant result when an effect is present.
In the case of correlations, which we have used as example, this results
in a larger correlation coefficient threshold that we consider “extreme”
enough to indicate significance. Essentially, we are raising the bar for
what qualifies as a significant result.
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Holding all other factors constant, reducing the alpha level will decrease
the power of the test. Power refers to the probability of correctly reject-
ing the null hypothesis when it is false (i.e., detecting a true effect). As the
threshold for significance becomes stricter, it becomes harder to detect
effects because the criterion for rejection is less lenient. Consequently,
more true effects may go undetected, increasing the risk of committing
a Type Il error (failing to reject a false null hypothesis). Visually, imagine
the alternative distribution and the red regions, as shown above. Hold
everything constant except those red regions. Slide those outward.
Hopefully, you can intuitively understand this means less studies would
achieve statistical significance.

Trade-offs in Reducing Alpha

Reducing alpha is often done to minimize the risk of a Type | error, but
this comes with trade-offs. While a stricter alpha reduces the probability
of falsely rejecting the null hypothesis, it also reduces the power of your
test, making it harder to detect true effects. Therefore, when designing
a study, it's important to carefully balance the chosen alpha level with
the desired power, especially when small effects are being studied.

If alpha is too lenient (e.g., .10), the power may increase, but this comes
at the expense of a higher likelihood of committing a Type | error, which
could undermine the validity of your findings.

Thus, reducing alpha lowers the probability of Type | errors but also
decreases the test’s power, making it more difficult to detect real effects.
This trade-off must be carefully considered during the study design
phase, particularly in studies where detecting small but meaningful
effects is crucial.

7.2.1.3 Increasing n

There is a direct relationship between n and power. Keeping both the
hypothesized effect size and alpha constant, increasing n will increase
power.
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7.3 Conclusion

Although controversial, NHST is widely used to test hypotheses. We
know that NHST begins with an assumption that there is no population-
level effect or relationship. Then data is collected from a sample that is
believed to be representative of that population. Should the data not
align with the null hypothesis, it is taken as evidence against it.

Additionally, there are several concerns and misinterpretations were
discussed and allow you to make your own decisions on the frequency
and weight of using p-values in your research.

7.4 Power in R

This section will focus on conducting power analysis across various sta-
tistical platforms. For now | focus on R, but may include other software
in future editions.

We will focus on two packages for conducting power analysis: pwr and
pwr2.

7.4.0.1 Correlation

Correlation power analysis has four pieces of information. You need any
three to calculate the other:

® nis the sample size

* ris the population effect, p
® sig.level is you alpha level
® power is power

So, if we wanted to know the required sample size to achieve a power
of .8, with a alpha of .05 and hypothesized population correlation of .25:

## You simply leave out the piece you want to calculate
pwr.r.test(r = .25,

power = .8,

sig.level = .05)
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approximate correlation power calculation (arctangh
transformation)

n = 122.447
r=20.25
sig.level = 0.05
power = 0.8
alternative = two.sided
7.4.0.2 t-test

With same sized groups we use pwr.t.test. We now need to specify
the type as one of ‘two.sample’, ‘one.sample’, or ‘paired’ (repeated
measures). You can also specify the alternative hypothesis as ‘two.sided’,
‘less’, or ‘greater’. The function defaults to a two sampled t-test with
a two-sided alternative hypothesis. It uses Cohen’s d population effect
size estimate (in the following example | estimate population effect to
be d = .3:

pwr.t.test(d = .3,
sig.level = .05,
power = .8)

Two-sample t test power calculation

n = 175.385
d=0.3
sig.level = 0.05
power = 0.8
alternative = two.sided

NOTE: n is number in *each* group

7.4.0.3 One way ANOVA

One way requires Cohen’s F effect size, which is kind of like the
average Cohen'’s d across all conditions. Because it is more common for
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researchers to use 7,, you may have to convert something reported fro
another study. You can convert 7, to F' with the following formula:

Cohen’s F = w/lﬂ—;z

pwr.anova.test() requires the following:

® k = number of groups

e f=Cohen'sF

e sig.level is alpha, defaults to .05
® power is your desired power

pwr::pwr.anova.test(k = 3,
f = .4,
power = .8,
sig.level = .05)

Balanced one-way analysis of variance power calculation

k =3
n =21.1036
f=20.4
sig.level = 0.05
power = 0.8

NOTE: n is number in each group

7.4.1 Alternatives for Power Calculation

7.4.1.1 G*Power
You can download here.

7.4.1.2 Simulations

Simulations can be run for typical designs, which you have seen above
through our own simulations to demonstrate the general idea of power.
For example, we can repeatedly run a t-test on two groups with a specific
effect size at the population level. Knowing that Cohen’s d is:
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d = 21722
spooled

We can use rnorm() to specify two groups where the difference in means
is equal to Cohen’s d and when we keep the SD of both groups to 1.

sample size <- 20
cohens d <- .4
t.test(rnorm(sample size),
rnorm(sample size, mean=cohens d), var.equal = T)

Two Sample t-test

data: rnorm(sample size) and rnorm(sample size, mean =
cohens d)
t =-1.771, df = 38, p-value = 0.0845
alternative hypothesis: true difference in means is not equal
to 0
95 percent confidence interval:

-1.2910722 0.0860217
sample estimates:
mean of x mean of y

0.116143 0.718668

We can use various R capabilities to simulate 10,000 simulations and
determine the proportion of studies that conclude that p < a.

This returned a data.frame will 10,000 p values from simulations. The
results suggest that 2350 samples were statistically significant, indicating
23.5% were statistically significant.

You may be thinking, why do this when | have pwr.t.test? Well, the
rationale for more complex designs is the same. For more complicated
designs, it can be difficult to determine the best power calculation to use
(e.g., imagine a 4x4x4x3 ANOVA or a SEM). Sometimes it makes sense
to run a simulation.

Simulation of SEM in R, which can help with power analysis.

Companion shiny app regarding statistical power can be found here.
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8 Confidence Intervals

If you read the last chapter on NHST, you now recognize that a p-value
provides a limited amount of information. Essentially, a p-value can indi-
cate whether the data is probable given a true null hypothesis. Often, we
want more than that. Consider Miller and his famous research on short-
term memory. Imagine if we said that the results of his famous studies on
memory suggest that his data are unlikely if people could not hold any-
thing in short-term memory, p = .03. Here, the null would be that people
could not hold anything in memory. Wow. Not that informative when
compared to the typically-communicated point and precision estimate
that short-term memory capacity is around 7 + 2 pieces of information.

Confidence intervals are intervals that present the most plausible values
for a parameter based on a given sample. For example, we might
conduct a correlation study and determine that r = .3,95%C1[.20, .34],
indicating that the best guess for the population parameter is .3, while
anywhere from .20 (the lower limit) to .34 (the upper limit) is plausible.
Typically, when working with Cls, we have:

1. Point estimate: a single number that indicates the resulting test
statistic. For any given sample, it is the most plausible value of the
population parameter.

2. Confidence interval: “an interval or range of plausible values for
the population parameter of interest. A Cl is a set of parameter
values that are reasonably consistent with the sample data we have
observed.” (Cumming & Finch, 2001). The range has two numbers: the
lower and upper limit. The lower limit represents the smallest plausible
value or the population parameter and the upper limit represents the
largest plausible value.
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3. Confidence level: the degree of certainty we wish to put around a
group of Cls. Typically set to 95% to correspond with a = .05 in NHST.
That is, typically, the Cl percentage and « sum to 1.

8.1 Benefits of Using Cls

There are numerous potential benefits of using Cls, as Cumming and
Finch (2001) explain. Let’s explore these in detail.

First:

They give point and interval information that is accessible and com-
prehensible and so, as the examples above illustrate, they support
substantive understanding and interpretation.

— Cumming & Finch (2001)

Specifically, Cls give point and interval information that is accessible
and comprehensible, which supports understanding and interpretation
(Cumming & Finch, 2001). Where p-values tell us little, Cls tell a lot more.
While p-values are generally misinterpreted or difficult to interpret,
particularly for novice researchers and the general public, Cls are more
easily interpretable.

For example, consider this statement. “The relationship between de-
pression and anxiety is unlikely given a true null hypothesis, p =
.021". That's much more difficult to tease apart and understand than
“The relationship between depression and anxiety is plausibly range
from a small medium positive relationship, » = .22, 95%C1[.15,.33]".

Or consider another example. | want to know how tall you are. You say:
given the 10 measurements |'ve taken over the last week, I'm probably
not Ocm tall, p < .001. Compare that to: I'm probably 162cm tall, but am
plausibly between 160-165cm tall. The former is what a p-value can tell
us, the latter what a Cls seeks to tell us.

Second:
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There is a direct link between Cls and familiar null hypothesis signif-
icance testing (NHST): Noting that an interval excludes a value is
equivalent to rejecting a hypothesis that asserts that value as true
—at a significance level related to C. A Cl may be regarded as the
set of hypothetical population values consistent, in this sense, with
the data.

— Cumming & Finch (2001)

What is meant here, is that if a Cl excludes a null hypothesis value at
whatever confidence level (e.g., 95%), it would also reject that value
through NHST and the same « level. For example, if you concluded that
the mean difference between two groups is 7, ;¢ = .3, 95%C1][.10, .38],
then a standard NHST would results in p < .05 for the same test. If the
Cls excludes 0, you would get a statistically significant result. The Cl tells
you just as much, and much more, than a p-value.

Third:

Cls are useful in the cumulation of evidence over experiments:
They support meta-analysis and meta-analytic thinking focused on
estimation. This feature of Cls has been little explored or exploited
in the social sciences but is in our view crucial and deserving of much
thought and development.

— Cumming & Finch (2001)

Specifically, Cls propose that their values will inform us of population
parameters over the long run of many studies of similarly conducted
tests. Meta-analysis can facilitate this by pooling multiple studies into
one strong evidence base. Because a 95%Cl indicates that 95% of Cls
over the long run will contain the true population parameter, meta-
analysis can inform just where that parameter may be. Forrest plots are
helpful in this regard.

Last:
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Cls give information about precision. They can be estimated before
conducting an experiment and the width used to guide the choice
of design and sample size. After the experiment, they give informa-
tion about precision that may be more useful and accessible than a
statistical power value.

— Cumming & Finch (2001)

8.2 Cl Basics

Given we know that Cls are made up of point estimates and intervals,
we can visualize them to help us understand what they are. Imagine
a population (e.g., all Grenfell students). We want to sample from the
population and infer from the sample statistics about the population
parameter. Our hypothetical construct of interest is IQ. Imagine that we
know the population parameters: X;, = 105 and o, = 15.

If we sample from the population we can calculate a Cl (let’s calculate
the 95% ClI, but we could for any number). In our sample we get a mean
of 103.71, with a 95% Cl of [94.51,112.91]. Let’s visualize it:

95.0 97.5 100.0 1025 105.0 107.5 1100 1125
1Q

In the above we have the mean, which is represented as a dot, and the
confidence interval, which is the space between the two vertical lines.
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Imagine that instead of taking one sample, we re-ran the study over, and
over, and over.... 100 times—each time with a slightly different sample!
If we plot the Cls for each of these studies, we get the following. For
convenience, I'll put a solid vertical line to represent the known popula-
tion mean:

|
I

|\

Sample Number

120

You may notice that some of the Cls contain the true population para-
meter and some do not. Given what you know about Cls, you know that
that those Cls that do not contain the true parameter would reject it
in a NHST test; those tests would say that the population parameter is
probably not 105. To help visualize, let's sort them by their mean:

Sample Number
_.....|||||||||||||||||||||||||”||““N

||"“”W"”||||||||"'"""

100 110 120
Mean

Think about it
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Stop and think before moving on. How many of the Cls contain the true
population parameter?

95/100 = 95% of the confidence intervals contain the true parameter.
This is an easy way to interpret and understand the meaning of a Cl.

Importantly, a Cl tells you nothing about the probability of any single
Cl containing the true population parameter. It tells you the most plau-
sible values of the parameter, given the obtained sample. Also, the %
of Cls containing the parameter will equal the confidence level over a
hypothetically infinite number of samples. In our example, 95% of the
Cls contained the true population parameter.

We can use the exact same data to calculate a 99% Cl instead of a 95%
Cl for each sample. Notice what happens when we use the new Cls:

123



OO0 MY IO T=DOMNOT DD T~ ONO T AN OMONAALOLOM T O0ONONANMNONNT T DT LODOTHNOANMNDOANLO OO LD OMLOODLON0OOONNLO—AINNLOO T DHMOLOMNO

TFOFONT—OANONOON  +—0WOM AN—O—<FFTONNODDTOODT™<FTOOWMNNOOTFOT—ANDNOANNDITO OO

JaquinN aidwes

[Te)

[Slollo)

LOOMTOAN MMM LOMMNOMNALOMLOWOON MM ©

e

120

110

100

90

Mean

By adjusting the Cls on the data, 99/100 (i.e., 99%) contain the para-

meter.
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O Think about it

If we change our Cls from 99% versus 95% (using the same data),
what should happen to the width of Cls? Use the graphs above to
help you visualize.

Picture 100 samples. If we calculate 95% Cls around the mean, then
approximately 95% will overlap the population mean. If we calculate
99% Cls, then approximately 99% will overlap the population mean.
This means that the 99% Cls must be longer than the 95% Cls. More
of them will over lap the mean.

Conversely, let's imagine we calculate the 50% Cls. Now approxi-
mately 50% will overlap the population mean. Thus, they will be
shorter/narrower.

Let's work out how to calculate Cls for a mean. While we will not learn
how to calculate them for more advanced statistics, the rationale is
typically the same: statistic + margin of error.

8.3 Cl of a Mean

The Cl of a mean can be calculated using the following formula.

_ S
720019 (77)

where:

® t(n_1,2) is the critical ¢ value for n — 1 df and
® o is your test criteria.

Let's do a concrete example. Imagine the following data: 8,5,9,5,4.
Let’s calculate a ClI for the population mean, given the data we have
collected. We need to calculate a few things. We need the mean (z), n,
SD, standard error (SE), and critical ¢.
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: — _ _ SD __ 21679 _
In this example, we get: T = 6.2, SD = 2.1679, and SE = = =
0.9694.

Next we need critical ¢. You can look this up in any t-distribution table
for ¢ and n — 1 degrees of freedom. For us, ¢.,.;; = 2.776445.

Our resulting Cl is:

— S
()
= 6.2 4+ 2.776(0.9694)

— 6.2 + 2.69105
= [3.51,8.89)

Thus, the population parameter is plausibly anywhere between 3.51 and
8.89. Our best guess is 6.2.

8.4 Other Cls

Usually your statistical program will calculate Cls for your various sample
statistics. For the purposes of courses at Grenfell, | do not require you
to know the formal calculations for various confidence intervals. You
should, however, know how to interpret them.

8.5 Conclusion

Cls represent the most plausible values of a population parameter. Due
to the misinterpretation of the work ‘confidence’, some propose that
they should instead be termed plausibility intervals. For our purposes,
they provider a best guess point estimate and set of plausible values
for the true population parameter. Indeed, we could write our results as
‘the plausible values for population parameter are 95%CI = [LL,UL].
However, given we never know the true population parameter and
whether our Cl contains it, there is the likelihood of committing an
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error. Regardless, Cls provide much more information than p-values and
should be the focal point of a results section rather than simple statistical
significance.

8.6 Practice Questions

1. Calculate the mean and 95% Cl for the following list of numbers:
10, 3,4, 3,7
2. Interpret the following confidence intervals:

a. r=.3,90%CI[.13, 42]
b. mean difference between group 1 and group 2 =3.2,
95%C1I[—1.2,6.3]

8.7 Answers

Mean SD N SE LowerCl UpperCl
54 |3.05(5|1.364| 1.613 9.187

a. This means that the correlation between two variables is best esti-
mated to be 0.3. However, anywhere between 0.13 and 0.42 are
plausible values. Since this Cl does not include O, the correlation is
likely statistically significant.

b. This indicates that the estimated mean difference is 3.2. However,
the mean difference is plausibly between —1.2 to 6.3. Since the ClI
includes 0, this suggests that the difference between the two groups
may not be statistically significant. The data is not conclusive about
whether there is a true difference between the groups.
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9 z-test

This chapter will cover the z-test. Although more details follow, in short,
a z-test is a statistical method used to determine if there is a significant
difference between a sample mean and a known population mean
assuming the population variance is known. It calculates a z-score, which
measures how many standard deviations the sample mean is from the
population mean. By comparing this z-score to a critical value from the
standard normal distribution, researchers can determine whether the
observed difference is statistically significant. These tests are commonly
used in large-sample studies where population parameters are available.

9.1 Betcha’' can’t eat just one!

Imagine we wanted to model the average weight of a bag of Lay’s Potato
Chips. Let's use our scientific method, as discussed in an earlier chapter,
to conduct some science.

Specifically, you have a theory that, despite being listed as 200g, the
large bag of chips actually weighs less because the company cuts corners
to save money and is, thus, dishonest about the weight. So you hypoth-
esize that Lays chips that are listed as 200g do not weigh 200g. Let'’s
work through the steps.

9.1.1 1. Generating hypotheses:

Our conceptual hypothesis that “Lays chips that are listed as 200g do
not weigh 200g” can be translated into a statistical hypothesis, which is
represented as the null and alternative hypotheses:
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HO : :u’lays = 2009
Hl * Hlays < 2009

You email Lays and they respond, indicating that their chips, on average,
weigh 200g, but have some variability. Specifically, they say the standard
deviation of weight of the chips is 6g. You aren't satisfied with that
response and continue with your research.

It is impossible for you to weigh every single produced 200g bag of Lays
chips, so you decide to take a sample. You decide to use NHST to test
the weights of bags and use a a = .05 criterion.

9.1.2 2. Designing a study

Before conducting the study, you write up your proposed design and
submit it to the Grenfell research ethics board. You plan a study wherein
you will drive around Corner Brook to three popular stores: Sobey’s,
Myles’s, and Coleman’s. You will buy two 200g bags of Lays at each
location, resulting in a total sample size of six (n = 6). Once you have
the chips, you will bring them to your home and weigh them on a
professionally calibrated weight scale. You decide to pour the chips out
of the bag, as Lay’s communicated that the weight indicates the chips
put in a bag and does not include the bag.

The Grenfell Campus research ethics board foresee no risks and allow
you to complete the study.

9.1.3 3. Collecting data

You follow through with your research plan. You get the following data:

Bag Store  Weight

1 Wilsons | 201.1
2 Wilsons | 191.7
3 Myles 194.6
4 Myles 191.3
5

Colemans | 189.9
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Bag Store  Weight
6 |[Colemans| 195

9.1.4 4. Analyzing data

We know the population mean (u = 200) and standard deviation (o = 6).
Let’s calculate the mean and standard deviation of our sample.

‘ 193.9 ‘ 4.017 \

9.1.4.1 Mean, Standard Deviation, and Variance

Remember, the mean is a measure of central tendency and is (here,
population):

and population standard deviation is:

B \/zjil (z; — 7)°
7= N

and population variance is:

You may remember that the population and sample standard deviation
differ in the denominator. The sample SD and variance have n — 1 as a
denominator versus the population’s n. Revisit Bessel's Correction for a
refresher as to why.

9.1.4.2 Visualizing Chips

Given that Lays has communicated the population parameters, we can
calculate how likely our sample is. First, let’s visualize the distribution of
chips with a 4 = 200 and o = 6:
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180 185 190 195 200 205 210 215 220
Weight

When we repeatedly take samples from a population and calculate the
mean of each sample, the distribution of these sample means forms
what's known as the sampling distribution of the sample mean.

Importantly, according to the Central Limit Theorem (CLT), no matter
what the original distribution of the data looks like (as long as it has a
finite mean and variance), the sampling distribution of the sample mean
will tend to be normally distributed as the number of samples increases.
This is true even if the population distribution is not normal.

The mean of the sampling distribution of the sample mean (often
denoted p ;) will be the same as the mean of the original population. So
if the average weight of chip bags in the population is, say, 200 grams,
then the mean of all those sample means will also be 200 grams.

The standard deviation of the sampling distribution (called the stan-
dard error) is smaller than the population standard deviation. It is
calculated as:

Standard Error = %
Where o is the population standard deviation and n is the sample size.
This means that the variability (spread) of the sample means is less than
the variability of individual data points in the population. Additionally,
as the sample size increases, the standard error approaches 0. That is,
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a larger sample size provides a more precise estimate of the population
mean.

If you plot the means of a lot of samples of 6 bags of chips, you would
get a normal-shaped bell curve (assuming you've taken a large number
of samples), with the peak centered at the population mean. The spread
(or width) of this bell curve depends on the sample size you drew and
the population standard deviation. The more samples you take, the
smoother and more normal the distribution of sample means will look.

In our example, if we take a sample of six bags, calculate the average
weight of those six bags, and repeat this process many times, we would
end up with a collection of sample means.

400

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
Hx

w
o
o

2

Number of Samples
o
o

—_
o
o

As you can see from the figure, when you collect the mean of six random
bags of chips many times, they form another normal distribution.
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O Definition

The standard error is the standard deviation of sample means. A
large standard error indicates high variability between the means of
different samples. Therefore, your sample may not be a good repre-
sentation of the true population mean. This is not good.

A small standard error indicates low variability between the means of
different samples. Therefore, our sample mean is likely reflective of
the population mean. This is good.

Should the above distribution of sample means truly follow a normal
distribution, then we should be able to calculate how likely our sample
of six bag of chips is! We can fill in the what we know, according to Lays:

— g — . _ o _ 6 __
uj—u—QOOand,aj—\/ﬁ—\/é—2.4495.

People have used calculus and other math to help us identify the propor-
tions of sample means in various tails, or the proportions associated with
various scores. Using this math, the probability of getting our sample
mean of 193.92 can be converted into a z-score:

z—7 _ 193.9185 — 200

= —2.482752
2.4495 8275

z =

Oz

Additionally, the probability of getting a z-score that low is 0.0065. Recall
that the normal distribution has some unique properties and we can find
out the proportion of scores that fall in the tails. While you may have
used table like the previous link in past courses, computers can easily
determine the exact quantity (e.g., pnorm() in R).
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Hypothetically, out of 1000 samples of six bags of chips drawn from the
distribution of x =200 and o = 6, we would get a score as low as our
sample mean or lower less than 7 times (7/1000 is close to 0.65%). Is this
unprobably enough? This is determined by our apriori criteria; for us it
was o = .05. Thus, if the data are at extreme 5% of the distribution, we
would conclude that it is unlikely given a true null, which is p < .05. Our
data was much less likely: p = .0065. Our sample is very unlikely if Lays
is telling the truth!

You just did a z-test. Let's run it in R to ensure we get the same numbers!
Recall our data:

Bag Store  Weight

Colemans | 189.9
Colemans| 195

1 Wilsons | 201.1
2 Wilsons | 191.7
3 Myles 194.6
4 Myles 191.3
5
6

The assumption is that we have randomly sampled. That is:
Hy : =200

and
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Hy : i < 200

What would you conclude from the following output?

One-sample z-Test

data: chip data$Weight
z = -2.483, p-value = 0.00652
alternative hypothesis: true mean is less than 200
95 percent confidence interval:
NA 197.948

sample estimates:
mean of x

193.918

9.1.5 5. Write your results/conclusions

When interpreting this, we can say that:

The sample of six bags of chips had a mean weight of z = 193.91 (SD =
4.02). A z-test indicated that the sample mean was unlikely given a true
null hypothesis that 4 = 200 (o = 6), z = —2.48, p = .0065.

9.2 Conclusion

A z-test is a statistical method used to determine if there is a significant
difference between a sample mean and a known population mean
assuming the population variance is known. It calculates a z-score, which
measures how many standard deviations the sample mean is from the
population mean. By comparing this z-score to a critical value from the
standard normal distribution, researchers can determine whether the
observed difference is statistically significant. These tests are commonly
used in large-sample studies where population parameters are available.
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9.3 Practice Questions

1. Calculate the mean, sample SD, and sample variance of the following
two variables, x and y:

6 (10
316
12| 8
319
6| 4

2. What's the difference is the probability of sampling a single bag of
chips weighting 190g in a sample versus getting a mean weight of
1909 for 10 bags of chips? Why are they different? How to the distri-
butions differ?

3. What happens to the SD of the distribution of sample means as the
sample size increases? Imagine drawing 100,000 bags of chips.

4. Suppose a university claims that the average score on a standardized
test for psychology students is 75 with a standard deviation of 10. We
collect a sample of 15 students’ test scores to see if the average score
differs from 75. The following are the scores:

Person Score

1 78
74
61
75
57
80
82
66
74
90

V(oINPT WIN

—_
o
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Person Score

11 81
12 64
13 52
14 45
15 87

a. What is the sample mean?

b. Perform a one-sample z-test: Is the sample mean significantly differ-
ent from the claimed population mean of 75? Use a population
standard deviation of 10 and a significance level of 0.05.

c. What is the z-score for this test?

d. What is the p-value for the z-test? Does it allow us to reject the null
hypothesis?

9.4 Answers

1.

Mean_x SD_x Mean_y SD_y
6 3.674| 7.4 |2.408

e Single Bag: The probability of randomly selecting one bag weighing
190g is based on the overall distribution of weights. For example, if
most bags weigh around 200g, the chance of getting exactly 190g
might be moderate.

e Mean of 10 Bags: The probability of getting an average weight of
190g from 10 bags is much lower because averaging reduces variabil-
ity. If the average weight of a sample is far from the population mean,
it's less likely to occur.

3. As the sample size increases, the standard deviation of the sample
means (called the standard error) gets smaller. This means the aver-
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age weight of the sample gets closer to the true mean weight of the
population.

Example with 100,000 Bags: If we take 100,000 bags, the standard error
will be very small. This indicates that the average weight of these bags
will be very close to the true population mean, making it a precise
estimate.

4. z-test results

One-sample z-Test

data: test scores$Score
z = -1.523, p-value = 0.128
alternative hypothesis: true mean is not equal to 75
95 percent confidence interval:
66.0061 76.1273
sample estimates:
mean of x
71.0667

APA Write-Up A z-test was conducted to determine if the average score
of psychology students on a standardized test significantly differed from
the university’s claimed average score of 75. Our results are not unlikely
given a true null hypothesis (mean difference = 0), z = —0.41,p = .681.

Explanation Since the p-value (.141) was greater than the significance
level of .05, the null hypothesis was not rejected. These results suggest
that there is insufficient evidence to conclude that the average score of
psychology students significantly differs from the claimed mean score
of 75.

138



10 Independent t-test

This chapter will cover the independent t-test. Although more details
follow, in short, an independent t-test is a statistical method used to
determine if there is a significant difference between the means of two
independent groups. Unlike the z-test, which has one group’s mean,
the independent t-test is used to compare the means of two groups.
Additionally, the z-test is used when the population variance is known,
where the independent samples t-test is used when the population
variances are unknown and estimated from the sample data. It calculates
a t-statistic, which measures how many standard deviations the differ-
ence between the two sample means is from the expected difference
(usually zero). By comparing this t-statistic to a critical value from the t-
distribution, researchers can determine whether the observed difference
is statistically significant (i.e., unlikely given a true null of no difference).
Independent t-tests are commonly used in psychological research.

10.1 Some Additional Details

The t-test is used to compare two groups, which is considered one
categorical (independent) variable. As examples:

® The variable gender could have two potential groups (male versus
female);

® The variable time could have two potential groups (Time 1 versus time
2; Age 8 versus age 12)

® The variables treatment could have two potential groups (medication
versus therapy).
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Additionally, we measure some continuous outcome (dependent) vari-
able. In most psychological research, and experiments in particular, we
aim to both randomly sample participants from the population and
randomly assign them to different groups. This process helps ensure that
the groups are comparable, so any differences in groups means on the
outcome variable can be attributed to the grouping variable. In other
words, any changes in the dependent variable (DV) are assumed to result
from the independent variable (IV).

© Definition Refresher

In a random sample, a subset of individuals chosen from a larger
population in such a way that every member of the population has
an equal chance of being selected. This ensures that the sample
accurately represents the population, which reduces bias and ensures
results are generalizable.

Random assignment is the process of assigning participants in an
experiment to different groups (e.g., treatment vs. control) using a
random method. Random assignment ensures that each participant
has an equal chance of being placed in any group, which should
balance out any other differences between group members. This
helps control for confounding variables, which allows researchers to
make causal inferences.

If you recall, the null hypothesis typically purports that there is no
difference/association. Thus, imagine we are comparing the means two
groups: p; and p,. The null hypothesis states:

Hy @ py = iy
or, in another form:
Hy:py—py=0
and the alternative hypothesis states (for a two-sided test)
Hy:py # po

or, in another form that aligns with above:
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Hy:py—p2#0

In the last chapter we learned about the z-test, which carries a somewhat
unrealistic assumptions: that we know some population’s variance. Most
times we do not know the population standard deviation or variance,
so we must estimate it using our sample data. Furthermore, in last
chapter we simulated the distribution of a sample’s means over and over
to demonstrate central limit theorem and show how standard error is a
function of a sample’s standard deviation and sample size (SE = %). In
a t-test, we are not interested in one mean, but two. We also have two
potential standard deviations. Thus, our analysis is slightly different.

10.2 Betcha’ can’t eat just two...?

Imagine we wanted to model the average weight of bags of two different
flavors of Lay's Potato Chips. Let's use our scientific method, as discussed
in an earlier chapter, to conduct some science.

Specifically, you have a new theory: Lays purposely puts fewer chips
in a bag of Ketchup Chips than Regular Chips because the seasoning
in Ketchup Chips costs more to produce. Based on this, you hypoth-
esize that 200g bags of Ketchup Chips weigh less than 200g bags of
Regular Chips.

10.2.1 1. Generating hypotheses:

Your hypothesis can be translated into a statistical hypothesis, repre-
sented as the null and alternative hypotheses:

HO . :U’k:etchup = :U’regula'r

This states that the average weight of Ketchup Chips is equal to that of
Regular Chips. The alternative hypothesis is that

Hl : :U’k:etchup < :U’regula'r
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This states that the average weight of Ketchup Chips is less than that of
Regular Chips.

You email Lays, and they respond similarly to before: “All our bags weigh,
on average, 200g regardless of flavor! Also, we don’t know the standard
deviations of ALL the flavors...measure them yourself! And, oh...stop
emailing us!”
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© One and Two-sided Tests

So far we have looked at two-sided tests. Recall in a previous chapter
we looked at distributions of tests statistics based on certain sample
sizes and population parameters.

For example:

Critical value: 107.02

Critical value: 92.98

Density

85 90 95 100 105 110 115
1Q

In the above, each of the two tails has 2.5%, which total 5%. The
horizontal lines represents the critical values. Some researchers may
have hypothesis so specific that they are confident their tests statistics
will be in one specific fail of that distribution. Well, those research
may wish to keep a total 5% of extreme values to represent statis-
tical significance, but put them exclusively in one tail. Compare the
following to the above, which both have red regions accounting for
5% of the total distribution:

[1] 105.517

Density

stuHded@gnb%ﬂgg’a rmpwgytfmp&&elhde@n&hmbggmy o 1gloﬂcference
Overaall "the pros and cons of usméoa one-tailed test must be consid-

ered and determine prior to conductin ormal analyses.
?\y would a researcﬁer do thlsg(éNeﬁ atdo you notlcy about the



10.2.2 2. Designing a study

Back to our Lay's research. Determined to investigate further, you plan
to purchase two cases of chips (15 bags each) directly from Lays: one
case of Ketchup Chips and one case of Regular Chips. Your total sample
size is 30 bags—15 Ketchup, 15 Regular.

Once you have the chips, you will weigh each bag using a professionally
calibrated scale, ensuring the weights reflect only the chips and season-
ing themselves, excluding the bags. You decide to use null hypothesis
significance testing (NHST) to analyze your data with a significance level
of a = .05.

Prior to conducting your research, you submit your research plan to the
Grenfell Campus research ethics board, which approves your study and
classified it as low-risk.

10.2.3 3. Collecting data

You follow through with your research plan. You get the following data:

Bag_ID Flavour Weight

Ketchup | 203.5
Ketchup | 202.5
Ketchup | 189.4
Ketchup [ 190.3
Ketchup | 203.4
Ketchup | 199.9
Ketchup | 200.6
Ketchup | 197.8
Ketchup | 191.8
Ketchup| 186

Ketchup | 193.8
Ketchup | 194

Ketchup | 194.2
Ketchup | 189.7

rlolgl2|ale|e|N|o|u|r|lw|n]| =
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Bag_ID Flavour Weight

15 | Ketchup | 198.1
16 Regular | 207

17 Regular | 201.4
18 Regular | 209.5
19 Regular | 195

20 Regular | 204.2
21 Regular | 206.2
22 Regular | 198.2
23 Regular | 200.9
24 Regular | 197.9
25 Regular | 198.5
26 Regular | 191.3
27 Regular | 205.9
28 Regular | 191

29 Regular | 202

30 Regular | 213.1

And we can summarize the data:

Flavour
Ketchup

\Y/CET
195.673

Min
186

Max
203.5

SD
5.616

Regular

201.475

191

213.1

6.359

It is also helpful to visualize the data using a graph/plot. There are several
options for a t-test (see an earlier chapter regarding ways to visualize
data). For now, we will create a dot plot that has a dot for each bag
of chips. The y-axis represent the weight, and the x-axis represent the
flavor. | have added some slight x-axis movement within each flavor to

prevent dots from overlapping.
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How do you make sense of this figure? Are there trends you see? If
you have to guess, without having access to a formal analysis, would
the flavors weight the same?

10.2.4 4. Analyzing data

If you recall the concept of the distribution of sample means from the z-
test chapter, you know that sample means vary due to random sampling.
For example, even if a population mean is 200g with a standard deviation
of 6g, taking a sample from that population might not give us exactly
200g every time due to this variability.

We can apply this same logic to the differences between two groups’
means. Even if the true means of both groups are identical, sampling
variability will cause the observed difference between the sample means
to deviate from 0. In other words, we may see some differences between
the two groups’ sample means, even if both are drawn from the same
population or populations with identical means.

A t-test helps us assess whether the observed difference between
these sample means is large enough to be statistically significant. By
using a pre-specified significance level (like a = 0.05), we can determine
whether the difference is so large that it's unlikely to have occurred if
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the groups indeed came from the same population—suggesting that the
two groups’ means are different.

We will need several pieces of information prior to analyzing our results.

10.2.4.1 Deriving the Distribution of Differences in Sample Means
The distribution of differences in sample means, known as the sampling
distribution of the difference between two means, is derived from the
individual sampling distributions of each group’s mean.

10.2.4.1.1 1. Sampling Distribution of Each Group’'s Mean

For each group in an independent t-test, the sampling distribution of the
sample mean is normally distributed (or approximately normal for large
enough sample sizes, due to the Central Limit Theorem). The mean of
each group’s sampling distribution is the population mean (), and the
variability is represented by the standard error of the mean. For Group
1, the standard error of the mean (SE1) is:

SE, =

VI

where s, is the sample standard deviation of Group 1, and n, is the
sample size. For Group 2, the standard error of the mean (SE2) is:

SE, = —2
N
10.2.4.1.2 2. Sampling Distribution of the Difference Between

Means

To obtain the sampling distribution of the difference between the two
sample means (X; — X,), we combine the two individual sampling distri-
butions. The mean of the difference between the two sample means is
the difference between the population means:

H(xX,-X,) = H1 = M2

If the null hypothesis (H,)) is true (i.e., the two population means are
equal), then the mean difference will be 0 (u; — puy = 0).
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10.2.4.1.3 3. Standard Error of the Difference Between Means

The variability (spread) of the distribution of the difference between
means is captured by the standard error of the difference. This is calcu-
lated by combining the standard errors of both groups. If we assume that
the variances of the two groups are equal, we use the pooled standard
deviation to compute the standard error of the difference:

52 52
stoce () ()

Where s,, is the pooled standard deviation, and n, and n, are the sample
sizes of the two groups. The pooled standard deviation (s,) is calculated
as follows. It's often called the summation form:

L \/ (ny —1)s? + (ny — 1)s3

ny +ngy — 2

or, an alternative formula for pooled variance follows. You can take the
square root of the following to obtain the former. It is often called the

weighted variance form:
2 2
g _ 2 — )" + E(zy — Ty)
P ny +ny — 2

10.2.4.1.4 4. t-Distribution

The sampling distribution of the difference between means follows a t-
distribution when the population variances are unknown. The degrees
of freedom (df) for this t-distribution are:

This t-distribution is used because we are estimating the population
variances from the sample data, and it accounts for the uncertainty
associated with that estimation.
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10.2.4.1.5 5. Calculating the t-statistic
The t-statistic is calculated by comparing the observed difference be-
tween the two sample means to the expected difference under the null
hypothesis. The formula is:
¢ X, — X
SEx,-x,

Where X, and X, are the sample means for Group 1 and Group 2 and
SEx, _x, is the standard error of the difference between the two means,
which is calculated using the pooled standard deviation.

The t-statistic tells us how many standard errors the observed difference
between means is away from 0 (the expected difference under the null
hypothesis). A large t-value suggests that the difference between the
means is unlikely to have occurred by chance, leading to the potential
rejection of the null hypothesis.

10.2.4.2 Assumptions
There are several assumptions we must have when testing from the t
distribution.

1. The data are continuous. For our purposes, this will be interval or
ratio data.

2. The data are randomly sampled.

3. The variance of each group is similar.

10.2.4.3 Welch's t-test
So far we have used formulas from Student'’s t-test. Specifically, Welch's
t-test is an alternative test that is more robust to unequal group variances
and smaller sample sizes. Welch's t-test alters the denominator for the
t-test in the equation to:

SH + SE
where
S.
83 = —
VALY
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Thus, the overall equation for Welch's t-test is:
XX
/2 2
SH + Sﬁ

Furthermore, Welch’s t-test alters the degrees of freedom (v) to:

4 4
S1 S2
2 2

nivy navy

Importantly, there are no major disadvantages to using Welch’s versus
Student’s and you should probably use it in your own research. R’s
function t.test() automatically uses Welch's t-test.

For the purposes of this course, we will use Student's t-test for our
hand calculations. However, you can use Welch'’s t-test for any analyses
conducted using statistical software.

10.2.4.4 Effect Size

Cohen’s d is the standard effect size estimate for a t-test. It provides us
with an estimate of the standardized mean difference. It is:
d= Xl B X2

spooled
This is a standardized effect size that be compared across groups of

metrics. Please review the chapter that discussed how to best determine
meaningful effect sizes. However, Cohen suggested the following cut-

offs:

* Small-d = .2
e Medium-d=.5
* Llarge-d =8

10.2.4.5 Ketchup a rip-off?

Let’s apply this to our chips example. We have all the data to calculate
our t-statistic.
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Flavour Mean Min Max SD
Ketchup | 195.7 | 186 | 203.5|5.616
Regular | 201.5|191[213.1 | 6.359

We calculate our squared differences between each bag and the mean
of that group, which will be needed later. Not that in the following table,
the last column is the squared difference between the weight of a bag
of chips (X) and the mean of that bag’s GROUP (X; ketchup or regular):

Bag_ID Flavour Weight x_minus_mean_square

1 Ketchup | 203.5 60.632178
2 Ketchup [ 202.5 47.013878
3 Ketchup | 189.4 39.732011
4 Ketchup | 190.3 28.658178
5 Ketchup | 203.4 60.476544
6 Ketchup | 199.9 17.528178
7 Ketchup [ 200.6 24.272044
8 Ketchup | 197.8 4.737878
9 Ketchup | 191.8 15.236011
10 | Ketchup| 186 92.801111
11 Ketchup | 193.8 3.509378
12 | Ketchup| 194 2.667778
13 | Ketchup| 194.2 2.083211
14 | Ketchup| 189.7 36.160178
15 | Ketchup| 198.1 5.986178
16 Regular | 207 30.081568
17 Regular | 201.4 0.001248
18 Regular | 209.5 64.877655
19 Regular [ 195 41.800535
20 Regular | 204.2 7.207435
21 Regular | 206.2 22.039895
22 Regular [ 198.2 10.402775
23 Regular | 200.9 0.342615
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Bag_ID Flavour Weight x_minus_mean_square

24 Regular | 197.9 12.926422
25 Regular | 198.5 8.733995

26 Regular | 191.3 103.944822
27 Regular | 205.9 20.022642
28 Regular | 191 108.896182
29 Regular | 202 0.244695

30 Regular | 213.1 134.668288

So, for bag 1:
(X — X)* = (203.46 — 195.6733)% = 60.63

Let’s fill in the missing data to compute our t-statistic. We have:

e X, = 195.67;

o X, =201.48;
= \2 = \2
o (2 _ I(Xu=Xy) +3(Xiy=X5)" | 44149455619 _ 1007.67 _ 35 g
p Py 15+15—2 28 :

and, therefore:

195. —201.4 —5.802
‘o 95.6733 —201.4753  —5.80 96486

399 | 899  2.190586
15 15

You may wish to look the p-value of the resulting test up in a critical value
table. However, most likely you will use statistical software to provide
you with an exact p-value.

Formal Results

The following is the formal results of our t-test:

Two Sample t-test
data: Weight by Flavour

t = -2.649, df = 28, p-value = 0.0131
alternative hypothesis: true difference in means between group
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Ketchup and group Regular is not equal to 0
95 percent confidence interval:
-10.28914 -1.31486
sample estimates:
mean in group Ketchup mean in group Regular
195.673 201.475

10.2.4.6 Cohen’'s D
Recall that:

T — Ty

d=

Spooled

From our above means and pooled variance, we have:

d— 195.67 — 201.48
Vv35.99

= —0.968

10.2.5 5. Write your results/conclusions**

A two Sample t-test testing the difference of weight of bags of chips
by Flavor suggest that Ketchup chips (X = 195.67 weigh less than
Regular chips (X) = 201.48). The results suggests that the effect is
statistically significant, and large )_(diff = —5.80,95%C1[—10.29, —1.31],
t(28) = —2.65,p = .013, Cohen’s d = —1.00, 95% CI [-1.78, —0.21]$.

10.3 Conclusion

an independent t-test is a statistical method used to determine if there is
a significant difference between the means of two independent groups.
Unlike the z-test, the independent t-test is used when the population
variances are unknown and typically estimated from the sample data. It
calculates a t-statistic, which measures how many standard deviations
the difference between the two sample means is from the expected
difference (usually zero). By comparing this t-statistic to a critical value
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from the t-distribution, researchers can determine whether the observed
difference is statistically significant.

10.4 Practice Questions

1. Practice Question: Calculate the degree of freedom that would be
used in Welch's t-test on the chip data:

Bag_ID Flavour Weight

Ketchup | 203.5
Ketchup | 202.5
Ketchup | 189.4
Ketchup | 190.3
Ketchup | 203.4
Ketchup | 199.9
Ketchup | 200.6
Ketchup | 197.8
Ketchup | 191.8
Ketchup| 186

Ketchup | 193.8
Ketchup | 194

Ketchup | 194.2
Ketchup | 189.7
Ketchup | 198.1
Regular | 207

Regular | 201.4
Regular | 209.5
Regular | 195

SHNNEHENEHENE R RENE

20 Regular | 204.2
21 Regular | 206.2
22 Regular | 198.2
23 Regular | 200.9
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Bag_ID Flavour Weight

24 Regular | 197.9
25 Regular | 198.5
26 Regular | 191.3
27 Regular | 205.9
28 Regular | 191

29 Regular | 202

30 Regular | 213.1

2. Practice Question: Calculate Student’s t statistics for the following
data comparing Sour Cream and Onion (SCO) chips to Salt and
Vinegar (SV).

Bag_ID Flavour Weight

1 SCO | 198.3
2 SCO | 1921
3 SCO | 204.8
4 SCO | 201.6
5 SCO | 198.3
6 SCO | 196.6
7 SV 193.7
8 SV 197.4
9 SV 199.2
10 SV 198.3
11 SV 213

12 SV 205.8

10.5 Answers

df
27.5777
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Effect sizes were labelled following Cohen's (1988)
recommendations.

The Two Sample t-test testing the difference of Weight by

Flavour (mean in
group SCO = 198.62, mean in group SV = 201.23) suggests that

the effect is
negative, statistically not significant, and small (difference

= -2.62, 95% CI

[-10.09, 4.86], t(10) = -0.78, p = 0.453; Cohen's d = -0.49,
95% CI [-1.74,

0.78])
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11 Paired t-test

This chapter will cover the repeated measures t-test, a statistical method
used to determine if there is a significant difference between the means
of two related, repeated, or dependent groups. Unlike the independent
t-test, which compares two separate groups, the repeated measures t-
test is used when the same participants are measured under different
conditions or at multiple points in time. Because any participant is more
similar to his or herself than others, their scores at two time points will
be more similar. As a result, we can use this to our advantage. The paired
t-test calculates a t-statistic based on the differences between paired
scores, which allows researchers to determine whether any observed
changes are statistically significant.

11.1 Some Additional Details

The repeated measures t-test is appropriate for situations in which there
is a natural pairing of the data such as when measuring a group of
participants who are measured on some outcome both before and after
an intervention. Or, as another example, when participants undergo
two different experimental conditions; an outcome is measured after
receiving each condition.

Importantly the null hypothesis posits that there is no change in the mean
difference scores between the two time points or conditions. Specifically,
the null hypothesis states:
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where Ap (delta mu) is the mean of the differences of participants across
two time points or two conditions. The alternative hypothesis states (for
a two-sided test)

Hy: App #0

In this context, we're testing whether there is a statistically significant
difference in the mean scores of the difference between participants at
two time points or under two conditions, rather than comparing two
independent groups. So instead of calculating a mean for group 1 and
another for group 2, we calculate the difference scores for each partic-
ipant and get the mean of those differences.

11.2 Key Assumptions

A repeated measures t-test can be conducted under certain assump-
tions. We will explore these in more detail later, but in short:

First, the data are continuous. The dependent variable should be at the
interval or ratio level. Second, the paired scores are normally distributed.
Stated another way, the differences between paired scores should follow
a normal distribution. Last, there is independence of observations within
each pair; each observation in one condition should correspond to a
single observation in the other condition. With these assumption in
mind, let’s work through an example.

11.3 Have you tried... just not being anxious?

Imagine a researcher that wants to test the effectiveness of a new anxi-
ety-reduction therapy. The researcher plans on recruiting individuals who
are diagnosed with generalized anxiety disorder (GAD) and measures
their anxiety levels before and after completing the therapy program.
The researcher believes that the therapy will reduce participants’
anxiety levels. However, they decide that a two-tailed test would be
best, in case the new therapy program worsens anxiety.
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11.3.1 1. Generating hypotheses

We can translate this conceptual hypothesis into a statistical one. For
a repeated measures t-test, we are interested in whether the mean of
the differences between the two sets of measurements (pre-therapy and
post-therapy anxiety levels) is significantly different from zero. Thus, our
hypotheses are as follows:

H,: Ap=20

H :Ap+#0

11.3.2 2. Designing a study

In brief, the method for this study is:

Participants: Participants will be recruited by placing recruitment
posters at a local hospital. Interested participants will complete an
anxiety questionnaire and those with a score of 50 or above on the
anxiety measurement will meet criteria for participation. Those currently
receiving psychological services outside of the study will be excluded.
A power analysis revealed that 19.34 participants (20) are required for
adequate power.

Measures: Anxiety was measured using the Anxiety Questionnaire for
Adults (AQA). The questionnaire consists of 20 items, designed to eval-
uate the frequency and intensity of anxiety symptoms experienced over
the past week. Each item is rated on a 5-point Likert scale, ranging from
1 (not at all) to 5 (very often). Higher total scores indicate greater levels
of anxiety. The AQA has demonstrated strong psychometric properties
in community and clinical samples.

Procedure: Participants for the study were recruited through community
centers and online platforms, where they were provided with information
about the study’s purpose, procedures, and potential risks and benefits.
Interested individuals who met the inclusion criteria (ages 18 and older)
were screened via a brief eligibility questionnaire.
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Upon obtaining informed consent, participants were administered the
Anxiety Questionnaire for Adults (AQA) in a controlled environment.
The questionnaire was presented either individually or in small groups,
depending on the setting. The administration of the AQA took approx-
imately 10-15 minutes.

Included participants were enrolled in a six-week therapy program. Par-
ticipants completed individual therapy once per week for the six weeks
with a doctoral-level clinical psychologist. Participants who missed more
than two sessions were excluded from analysis.

The ethics review board at Grenfell Campus reviewed the project and
ethics submission and approved the study.

11.3.3 3. Collecting data

The study was completed as described; a final sample size of 20 was
used. The following data were obtained:

Participant_ID Pre_Therapy Post_Therapy

1 57.1 49.1
2 66.9 54.7
3 72.4 60

4 55.8 38.7
5 59.7 41.6
6 71.1 63.5
7 64.8 56.8
8 60.2 39.4
9 74.9 44.9
10 66.5 53.5
11 60.4 49

12 62.9 43

13 57.6 40.3
14 74.3 63.2
15 74.6 62

16 60.3 45.3
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Participant_ID Pre_Therapy Post_Therapy

17 59.5 41.6
18 64.3 53

19 59 43.1
20 63.2 39.1

11.3.4 4. Analyzing data

To assess the significance of the mean of the differences in anxiety
scores, we calculate the t-statistic for the paired differences. There is
some information we need to calculate the statistics. We require:

11.3.4.1 Mean Difference
First, we need the mean of the differences between the pre- and post-
therapy scores. We can simply calculate the difference between each
group’s mean. Here, the mean of the pre-therapy condition is 64.275
and the mean of post-therapy is 49.09. Thus:
Ap = py — pg

And for this study:

Ap = 64.275 — 49.09 = 15.185

11.3.4.2 Standard Deviation of Differences

Next, we need to calculate the standard deviation of these differences.
For us, we will first need difference scores (D,)for each person. For
example, the difference score (representing by A) for person 1 () is:

Az, =57.1—49.1 =8.0

We would do this for each individual. These are:

Participant_ID Pre_Therapy Post_Therapy Difference

1 57.1 49.1 8

2 66.9 54.7 12.2
3 72.4 60 12.4
4 55.8 38.7 17.1
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Participant_ID Pre_Therapy Post_Therapy Difference

5 59.7 41.6 18.1
6 71.1 63.5 7.6
7 64.8 56.8 8

8 60.2 39.4 20.8
9 74.9 44.9 30

10 66.5 53.5 13

11 60.4 49 11.4
12 62.9 43 19.9
13 57.6 40.3 17.3
14 74.3 63.2 11.1
15 74.6 62 12.6
16 60.3 45.3 15

17 59.5 41.6 17.9
18 64.3 53 11.3
19 59 43.1 15.9
20 63.2 39.1 24.1

Next we would calculate the standard deviation for these difference
scores. Note that the mean of the difference scores is the same as the
mean of pre-therapy subtract the mean of post_therapy (15.185).

R

n—1

where:

e D, represents each individual difference,
e D is the mean of the differences,
e n is the number of paired observations.

For us, this works out to be:

« > (D,— D) = 611.365
en—1=20—1=19

Thus:
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11.
sp = 61—5’65 = v/32.177 = 5.677
11.3.4.3 Standard Error of the Mean Difference
The standard error of the mean difference is calculated as follows:
—\2
2. (di B D) % Sp

Y RN

where:

® s, is the standard deviation of the differences
® n is the number of paired observations.

Thus, our SE can be calculated as follows:

SEp =207 _ 107

V20
11.3.4.4 Calculate the t-Statistic

The t-statistic is calculated by dividing the mean difference by the stan-
dard error:

Xdifference 15.185
t= = = 11.96
SE 1.27

Importantly, the paired t-test has one extra degree of freedom compared
to the independent samples t-test. For paired t-test:

df =n—1

A formal analysis would result in:

Paired t-test

data: df anxiety$Pre Therapy and df anxiety$Post Therapy
t = 11.96, df = 19, p-value = 2.73e-10
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
12.5282 17.8418
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sample estimates:
mean difference
15.185

The t-test output provides the t-statistic, degrees of freedom, and p-
value. If the p-value is below the significance level (o« = .05), we can
conclude that difference between pre- and post-therapy scores is un-
likely if the null were true (i.e., that the difference between before versus
after therapy was 0; no change).

11.3.4.5 Effect Size: Cohen’s d

For a paired-samples t-test, Cohen’s d provides an estimate of the stan-
dardized mean difference. Cohen’s d for repeated measures is calculated
as follows:

For us:

15185

d 5.677

= 2.67

Note that due to a small sample size, some statistical software may apply
a correction to test statistics. Specifically, you should use Hedge’s g when
dealing with a small sample size. In fact, there is no downside to using
Hedge's g. For small sample sizes, it applies a correct. For larger sample
sizes, it will approximate Cohen’s. In r, our results are:

Cohen's d | 95% CI

2.67 | [1.72, 3.62]

This standardized effect size allows us to determine the practical signif-
icance of the results. Cohen suggested interpreting d values as follows:

e Small: (d = 0.2)
e Medium: (d = 0.5)
e Large: (d =0.8)
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11.3.5 5. Write your results/conclusions

A paired t-test was used to determine the efficacy of the therapy by test-
ing the difference between the Pre-Therapy Post-Therapy scores. The
results suggests that the results are unlikely given a true null hypothesis,

D =15.19, 95%C1I[12.53,17.84], t(19) = 11.96, p < .001. Additionally, the
effect is considered large, d = 2.67, 95%CI[1.72, 3.62].

11.4 Conclusion

The paired t-test is a more powerful alternative to between subjects
t-tests that uses the same participants across multiple conditions. It is
good for testing changes in a variable over time such as in pre-post
designs. The repeated measures t-test takes advantage of the depen-
dence of observations, helping researchers draw conclusions.
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Q Tip

Building Your Toolbox

It may be good practice to take note of the use cases for each analy-
ses you learn about. For example, for a repeated measure/paired
t-test, what are the main uses, number and type (e.g., NOIR) of IVs,
number and type of DVs, major assumptions, statistical hypotheses,
and effect sizes?

In future chapters, add to this table:

Test Names  Main Uses Number of ~ Number of IV Type DV Type Assumptions Hypotheses  Effect Size
IVs DVs
z-test Compare 0 (No IVs) 1 None or Continuous  Normality, Null: Mean Cohen’s d
one Categorical known of group
group’s (e.g., population equals
mean to a Group) variance population
population mean,
mean. Alternative:
Mean of
group
differs from
population
mean
Independent Compare 1 1 Categorical ~ Continuous  Normality, Null: Cohen’s d
t-test means (Categorical, (2 groups) equal Means of (or Hedges'
between e.g., variances the two 9)
two Group) (for groups are
independent Student’st-  equal,
groups. test), Alternative:
independence Means of
the two
groups
differ
Repeated Compare 1 1 Categorical ~ Continuous  Normality Null: Cohen’s d
Measures t-  means (Categorical, (1 group) of Means at (for paired
test within the e.g., Time differences,  different samples)
same Point) sphericity time points
group at (if are equal,
different applicable)  Alternative:
time Means at
points. different
time points
differ
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12 One way ANOVA

This chapter will cover the one-way ANOVA, a statistical method used to
determine if there is a significant difference among the means of three
or more independent groups. Unlike a t-test, which compares the means
of only two groups, the one-way ANOVA extends this comparison to
multiple groups to test whether at least one group mean is significantly
different from the others. It calculates an F-statistic by comparing the
variance between group means to the variance within groups, allowing
researchers to determine whether any observed differences are statisti-
cally significant. This should make intuitive sense; if the groups do not
differ, their mean differences shouldn’t be that different from the random
variation within each group.

12.1 Some Additional Details

The one-way ANOVA is appropriate for situations where there is one
independent variable (IV) with three or more levels (e.g., conditions
or groups) and one continuous dependent variable (DV). For example,
researchers might use a one-way ANOVA to compare three different
teaching methods’ (IV with three levels) impact on test scores (DV). Or,
as another example, to assess the effects of three different diets (IV with
three levels) on weight loss (DV). Importantly, in a one-way ANOVA, the
participants in each group are different.

The null hypothesis for the one-way ANOVA (hereafter, | will simply write
‘ANOVA) posits that all group means are equal:

Hy:py = pg = pi3 = .. = piy,
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where k represents the number of groups. The alternative hypothesis
states that at least one group mean is different:

H, : At least one pu, differs from the others.

© ANOVA Hypotheses

The above is the general structure of H, and H, in ANOVA designs.

By rejecting the null hypothesis, researchers conclude that a statistically
significant difference exist between at least two group means: at least
one group differs from at least one other group. However, post hoc tests
are typically required to identify where these differences occur.

12.2 Key Assumptions

A one-way ANOVA can be conducted under certain assumptions. First,
the data are continuous. That is, the dependent variable should be at
the interval or ratio level. Second, there needs to be independence of
observations. Each group should consist of independent individuals; this
means that no participant is in more than one group. This assumption is
sometimes called independence of residuals. Third is the homogeneity
of variances. Here, the variance within each group should be approxi-
mately equal. This can and will be tested using Levene’s test. We want
a non-statistically significant result for Levene's test. Fourth, and last,
the residuals should be normally distributed. Recall that the residuals are
deviations from an observed and predicted score. It's a common miscon-
ception that the DV must be normally distributed. In reality, the residuals
should be normally distributed. We can visualize normally distributed
residuals using a Q-Q plot or formally test this using the Shapiro-Wilks
test. Note that the SW test is less informative for large sample sizes.

Q-Q Plot

The Q-Q plot show what a variable would like like if it were normally
distributed compared with what it actually is. In essence, we order our
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variable and compare to what the quantiles should look like under
normality. Consider the following data:

10.77
9.86
9.8
9.92
8.82

We could order these variables as: 8.82, 9.8, 9.86, 9.92, 10.77. Under a
normal distribution, we would create five quantiles (because we have five
score). Quantiles are cut-off points that each contain the same amount
of the distribution. Here our quantiles have 20% (1'%0% = 20%)

0.4
0.3
> 02

0.1

0.0
5.0 75 10.0 125 15.0

Believe it or not, each section in the above contains the same proportion.
Thus, if data were normally distributed and we drew five numbers, like
above, we would expect one to fall in each quantile.

The QQ plot compares where we would expect values to fall on a
normal curve versus where they actually are (e.g., z-score). Quantiles
are calculated for your data and for the theoretical distribution (e.g.,
Normal). Each data point’s quantile is plotted against the corresponding
theoretical quantile on the plot. The following is what a Q-Q plot looks
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like for data with 100 observations (there would be 100 quantiles, each
with 1% of a normal distribution):
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Normally distributed data will fall close to the line (vague, | know).
The above graph does let us know that observation 75 appears to be
particularly problematic. Typically, we would be concerned if the points
systematically varied from the line.The tails typically stray farther from
the line.

Shapiro-Wilks Test

The Shapiro-Wilks test assesses how far the data deviates from normality.
A statistically significant result (p < .05) is typically interpreted as the data
deviating from normality.

12.3 Treatments for OCD: What Works?

O'Connor et al. (2006) compared the efficacy of treatments for obses-
sive compulsive disorder (OCD). They measured the severity of OCD
symptoms, with lower scores indicating better outcomes (i.e., fewer
symptoms). Specifically, they compared differences in OCD severity after
individuals received one of:

170



1. Cognitive Behavioral Therapy (CBT)
2. Medication
3. CBT + Medication

And they believed that the CBT + Medication would show lower OCD
symptoms than the other groups.

12.3.1 1. Generating hypotheses

The main null and alternative hypotheses for the ANOVA can be con-
verted into a statistical hypothesis stated as (for the null):

Hy: popr = bre = LCBT+ R

And (for the alternative):

H, : At least one p; differs from the others.

12.3.2 2. Designing a study

We will use a research design to conduct a similar analysis as O'Connor
et al. (2006) using fake/hypothetical replication data. Although there are
some slight adjustments, our method follows:

Participants: Participants were recruited from the Montreal community,
meeting criteria for severe OCD (Y-BOCS >16). Exclusions included
major psychiatric cormorbidities like substance abuse or psychosis. A
power analysis determined that a sample size of 10 individuals per group
were needed for adequate power.

Materials: The Yale-Brown Obsessive Compulsive Scale (Y-BOCS) was
used to assess OCD severity.

Procedure: Participants were randomly assigned to either:

1. Fluvoxamine (hereafter, Rx): for 5 months

2. CBT only: 20 sessions focusing on exposure and cognitive restruc-
turing

3. Fluvoxamine + CBT: 20 sessions while also taking medication.
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Symptoms were measured at the end of the treatment conditions. Un-
fortunately, we lost any pre-treatment data so we can only assess OCD
severity at the end of treatment. Thus, we have three major groups (Rx,
CBT, Rx + CBT) and one outcome (OCD severity).

The ethics review board at Grenfell Campus reviewed the project and
ethics submission and approved the study.

12.3.3 3. Collecting data

The study was completed as described; a final sample size of 30 (10 per
group) was used. The following data were obtained:

ID Treatment OCD_Severity

1 CBT 12
2 CBT 8
3 CBT 12
4 CBT 10
5 CBT 7
6 CBT 10
7 CBT 10
8 CBT 11
9 CBT 11
10 CBT 14
11 Rx 14
12 Rx 12
13 Rx 8
14 Rx 11
15 Rx 9
16 Rx 10
17 Rx 8
18 Rx 13
19 Rx 9
20 Rx 7
21| CBT_Rx 9
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ID Treatment OCD_Severity

22| CBT_Rx 6
23| CBT_Rx 8
24| CBT_Rx 9
25| CBT_Rx 8
26| CBT_Rx 7
27| CBT_Rx 6
28| CBT_Rx 7
29| CBT_Rx 10
30| CBT_Rx 10

12.3.4 4. Analyzing data

Theoretically, we could do three t-tests:

1. CBT versus Rx
2. CBT versus CBT + Rx
3. Rx versus CBT + Rx

However, this would result in an inflated Type | error rate. Recall that we
typically set our a = .05 (1 — @ = .95). With three independent compar-
isons our alpha rate actually becomes:

1 . (1 . a)’l’bcompa'risons — 1 — (1 _ .05)3 et ,142625

Our Type | error rate would go from 5% to 14.26%! If we had four groups,
we would have six possible comparisons and our Type | error rate would
increase to 26.49%. The following figure represents the relationship
between number of comparisons and Type | error.
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Understanding this figure is important. Yes, you could do a bunch of
t-tests, but you trade off your alpha rate. Instead, you could use an
ANOVA.

An ANOVA allows us to compare 2+ groups within a single test —
and as you will see later, multiple Vs at once. Specifically, we can test
an independent variable’s association with a dependent variable and
answer, “do different groups/levels differ on the DV?" Prior to diving
into ANOVASs, we should understand the F-distribution.
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@ Understanding the F-Distribution

To understand the F-distribution, we need to explore the chi-square
distribution. Imagine we measure 1Q scores in a random sample of
four 20-year-olds. Let's assume 1Q is normally distributed with a mean
of 100 and a standard deviation of 15. For example:

name  iq

Alicia | 85
Ramona | 108
Marie | 91
Julianna | 108

We can standardize these scores by converting them to z-scores using
the formula:

Ly — 1
SD

z =

Here's how those z-scores look:

name iq z

Alicia | 85 | -1
Ramona | 108 | 0.53

Marie | 91 | -0.6
Julianna [ 108 | 0.53

These z-scores are also called standard deviates: they represent
how far each score deviates from the mean, measured in standard
deviations. Since the 1Q scores are independently and identically dis-
tributed (IID), we can calculate the sum of squares of these standard
deviates:

SS = En:zf
i=1

For our sample:

SS = (—=1)%2+ (0.53)2 + (—0.6)? + (0.53)%2 = 1.92

The chi-square value is the sum of squares of standard deviates. The
chi-square distribution describet’the distribution of these summed
squares when sampling repeatedly (theoretically, infinitely) from a
normally distributed population. For example, if we randomly sam-
pled four 1Q scores repeatedly, the sum of squared standard deviates

. ~ r b IR




Connecting Chi-Square to Variance

Recall that variance can be expressed as:

5 Z?Zl (z; — 55)2

ST =

n—1

Interestingly, the chi-square value can be scaled to estimate variance. By
dividing the sum of the standard deviates by the degrees of freedom,
we approximate a variance. For our four people from the 1Q example,
recall that:

SS = (—1)% + (0.53) + (—0.6)* + (0.53)* = 1.92
And the approximation of a variance being:

2 1.92
Scaled Chi-square = ;(—f =1-1- 0.64
The F-distribution is the ratio of two independent, scaled chi-square
distributions. Imagine we have two chi-square distributions: one with d f;

and the other with df,. The F-statistic is calculated as:

_ X%/dfl
X%/dfz

This ratio is central to ANOVA. In ANOVA, we compare two variances:

F

1. The variance of between the groups’ means (MSB: mean square
between).

2. The variance of individual scores within the groups (MSE: mean
square error).

If the groups are sampled from the same population (i.e., the null
hypothesis is true), the ratio of these variances should follow the F-
distribution. If group means vary substantially more than the variance
within the group, than the F value will be larger than expected. If the
value is at or beyond a pre-specified value (i.e., beyond our critical alpha
value), we assume that our data are unlikely given a true null hypothesis
and we reject the null hypothesis.
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To help you visualize the distribution, here's an example of the F-distri-
bution with df; = 4 and df, = 36:

F Distribution (df1 =4, df2 = 36)
0.7
0.6
0.5

0.4

Density

0.3

0.2

0.1

0.0

You can use critical values for F-distributions the same way you would
for z or t tests. We can choose the most extreme percentage of the
distribution that aligns with our critical value and compare our results
to that.

We can test our hypotheses through an ANOVA and post-hoc tests.

12.3.4.1 Our Model
Using the above hypothesis, we can frame our model as:

outcome; = group + error;

or more specifically, and expanded on below:
y; = By + x,;group; + error;

So, we think that any participant or individual’s (person i) score on
the outcome will be a function of some coefficient/intercept (5,), the
person’s group membership (z,group,), and some error (error;).

Our Analysis

If you read the section about the F-statistic earlier, you'll remember
that the standard deviates (or z-scores) were squared and summed to
calculate a total. We can use a similar idea when analyzing data with
multiple groups.
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In ANOVA, we compare two sources of variability:

1. Variability between group means: This tells us whether the group
means are different from each other.

2. Variability within groups: This reflects the differences between indi-
vidual scores and their group’s mean.

We calculate these as “sum of squares” and, subsequently, “mean
squared”, values:

1. SST (Sum of Squares Total): The total variability in all the scores.

2. SSB (Sum of Squares Between Groups): The variability explained by
group differences.

3. SSE (Sum of Squares Error): The variability within each group that
isn't explained by group differences.

These three components are related in a simple way:

SST =S5SSB+ SSE

In short, the one way ANOVA breaks the total variability into two parts:
what's explained by the group differences (SSB) and what'’s left over as
error (SSE). By comparing these two sources of variability, we can see if
the group means are significantly different from each other. Note: later
we will explore more complex types of ANOVAs that can break the total
variability into more than two parts.

Descriptions of each follow along with visualizations.

12.3.4.2 SST

The sum of squares total represents all the deviations of the model. It is
each score compared to the overall mean (sometimes called the grand
mean). Is it represented by:

n

SST =) (z;,— %)

=1

We can calculate SST by subtracting each score from the mean, squaring
it, and adding up across all participants. However, there is another
formula that may be easier to use:
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N 2
SST = img _ %
i=1

Here you only need three pieces of information:

1. Sum of each squared scores/value: Zi\il z? ,
2. Sum of scores/values, then square the total: (Zfil 9:1>
3. Total sample size: N

For our OCD data, the sum of the squared scores is 2868, the sum of
the scores, then squared, is 8.17967{4}, and N is 30. Thus, our SST is:

N (= ) 81796
T=N g2 ==t _9g68 ST 14y
SS ; 22 ~ 868 — — 67
We can also represent SST visually. This figure represents the total devi-
ations used to calculate SST. Each dotted lined represents the difference
between each individual and the grand mean (the solid black line).
Remember, the grand mean is the mean of all individuals.
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12.3.4.3 SSB

The sum of squares between groups (SSB) represents the deviation of
each group’s mean from the grand mean. In the following i represents
individual i and j represents group j.
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nj
SSB = Z n; (fj - fovera,ll)2
=1

where n; is the sample size for group j and 7., is the overall/grand
mean.

Alternatively, the following formula may be used:

o () (L)

i=1 i

Here we need the following:

Sum of z;, then squared for each group (j).
n, for each group.

Sum of x,; for ALL individuals.

N, total sample size.

= wnN -

For us, the sum of all scores, then squared for each group are:

Treatment Sum_then_squared

CBT 11025
CBT_Rx 6400
Rx 10201

The sum of all scores (regardless of group), then squared it 81796. Each
group has n = 10 and, thus, N = 30.

We will calculate the first part of the formula:
2
zk: (Zjil xij)
i=1 ni
for each group and then add them.
For group 1 (CBT):

2
(Zjil fcg> 11025

= 1102.
10 02.5

n;
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For Rx:

For CBT + Rx:

2
(Ejil i’?;) 6400

= 640
n; 10

Adding these three together give us the first part of the SSB equation:

2
( j=1 xﬂ)
AT T~ 11025 + 1020.1 + 640 = 2762.6

n.

k
=1 i

(2

The second part of the SSB formula is:

(Zh, 20, %)2 81796
N 30

= 2726.533

And our resulting SSB:
SSB = 2762.6 — 2726.533 = 36.067

© A real head scratcher

It can get confusing when different places use different names for
these. For example, we called the total sum of squares SST, but some
places call the sum of squares between SST (treatments). Other may
call the SSB, SSN (numerator). We will stick to the following for a one
way ANOVA:

Sum of squares total (SST)

Sum of squares between groups (SSB)

Sum of squares error (SSE)

SST = SSB + SSE
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This second figure represents SSB. Each dotted lined represents the
difference between a group’s mean and the grand mean. The colored
lines represent each groups mean. The black line represents the grand
mean.
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12.3.4.4 SSE

The sum of squares error SSE represents the deviation of each individual
from their group mean.

SSE=Y"(z;,—7,;)°

where z,; is individual i in group j and Z; is the mean of group j. For the
above data, for example the CBT group, we can calculate SSE.

An easier way to calculate this is to subtract SSB from SST. Likewise, if you
have SST and SSE, you can quickly calculate SSB. Recall the relationship
between the three:

SST =SSB+ SSE
and, thus:

SSE =S8ST —SSB
For us:

SSE = 141.467 — 36.067 = 105.4
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This third figure represents SSE. Each dotted lined represents the differ-
ence between an individual and their group’s mean. The colored lines
represent each groups mean.
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12.3.4.5 Mean Squares

We must also scale the sum of squares to become variances by dividing
by the degrees of freedom. Our df are df, =k —1 (where k is the
number of groups) and df, = N — k. This results in two Mean Squares.
These are, essentially, variances.

SSB
MSB =
df,
and
SSE
MSE =
S aT.

If you remember the above regarding the F distribution, you may intu-
itively relate it to the OCD treatment example, wherein:

MSB
F= MSE

We can determine how likely or unlikely our data are using the F-distri-
bution of df, and df, degrees of freedom.

Thus, the above example would results in:
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36.06667

MSB=—— =18.
S 31 8.033
and
105.4
MSFE = = 3.904
S 30 _3 3.90

and, thus:

18.033

= =4.61
3.904 619

We will compare this statistic to the distribution to determine how
probable our data are compared to the null hypothesis. If our F is large
enough to be unlikely given the null, we would reject it. The F statistic is
an omnibus test.

© Omnibus Tests

The F statistic provides the results of an omnibus test. These global
tests determine the ratio of variance explained by the model versus
error. In our F-test, it tells us that at least two of the means differ, but
does not tell us which one. Thus, we need to conduct some form of
post-hoc (after the event) tests.

If the omnibus test is not statistically significant, you can stop there.
The groups in the IV do not differ.

We can use an F-distribution table to find out our approximate p-value.
The table suggests that critical F for our degrees of freedom is F'(2,27) =
2.51 for an a = .05. Our obtained F is higher (E;, ;ined > Foriticar: 4-62 >
2.51) and, thus, p < .05. This site can calculate exact p-values. This site
returns a p-value of p = .019.

Our total results can be summarized in what is commonly known as an
ANOVA summary table.

Source Sum of Squares df F Value p-value
Between Groups 36.07 2| 4.62 0.019
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Source Sum of Squares df F Value p-value

Within Groups 105.4 27 - -
Total 141.47 29 - -

Any statistics program you use for your analyses will provide the appro-
priate p-value. For example, here is the output from R:

Predictor SS df MS F p partial_eta2 CI_90_partial_eta2
(Intercept) | 1102.50 | 1 | 1102.50 | 282.42 | .000
Treatment | 36.07 2 18.04 4.62 |.019 .25 [.03, .42]

Error 105.40 | 27 3.90

12.3.4.6 Effect Size

We can calculate n? (eta squared) as an effect size for our ANOVAs. This
is simply the ratio of SSB and SST. That is, deviations explained by the
model over all deviations. It is an indicator for fit of our model. It ranges
from O (nothing explained by the model) to 1 (everything explained by
the model). It is calculated as:

, SSB

= SsT

Typically, the following cut-offs are used:

e n2= .01 (small effect size)
e 2= .06 (medium effect size)
e n?= .14 (large effect size)

Let’s calculate it for our OCD example above. We had SSB = 36.067 and
SST = 141.477. Therefore:
,  36.067

"= Tanarr 2

12.3.4.7 Post-hoc Tests

So our ANOVA revealed a statistically significant results, but it was
an omnibus test. Now what? Unfortunately, the results of the omnibus
ANOVA test does not inform us which groups differ. It simply tells us at
least one group differ from at least one other group.
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Recall that our family wise error rate increases as we do more statistical
tests. So, while we may have set a criterion of a = .5, it increases as we
do more tests.

095
i B e A A S L 0
R e o ot o et e B e o o e e
0.80
075
070
e ey e o A
0.60

0.55 e
050
045

Error Rate

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44
Comparisons

which reflect the following error rates:

Groups Number of Possible Comparisons Error Rate

2 1 0.05

3 3 0.1426
4 6 0.2649
5 10 0.4013
6 15 0.5367
7 21 0.6594
8 28 0.7622
9 36 0.8422
10 45 0.9006

Initially, we should test only those comparisons with which we hypothe-
size to be different; doing more increases the likelihood that we commit
a Type 1 error. However, sometimes it makes sense to also do exploratory
analyses. If we conduct exploratory analyses, we should adjust our error
rate to reflect the multiple comparisons.

We will cover one major method of comparing group means: Tukey’s
Honestly Significant Difference (HSD).
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12.3.4.8 Tukey's HSD

Tukey’'s HSD provides an efficient ways to compare multiple groups
simultaneously to determine if their difference is statistically significant.
Basically, Tukey’s HSD provides a number with which to compare differ-
ences in group means. If two groups means’ differ by more then Tukey's
HSD, then they are statistically different.

© Think about it

Tukey’s HSD is, essentially, all t-test comparisons using a correction
for family-wise error rates.

The formula for Tukey’s HSD is:

where ¢ is a critical q value, M SFE is the mean squared error from our
ANOVA, n is the sample size per group. Should the difference between
the means of two groups exceed T, they are considered statistically
different.

From our ANOVA above, we got MSE = 3.904 and 10 individuals per
group. When we look up the critical ¢ value (for k = 3 and d f, = 27), we
get ¢ = 3.508. Thus, Tukey’s HSD would be:

MSE 904
5 = 3.508 x % =2.19

T =gqx

n

Thus, we can classify any mean difference beyond 2.19 as statistically

significant. That is, if the absolute value of one group’s mean subtracted

from another group’s mean is greater than 2.19, they are statistically
significantly different. Our groups are as follows:

diff lwr upr p.adj
CBT Rx-CBT -2.5 -4.6908019 -0.309198 0.0228923
Rx-CBT -0.4 -2.5908019 1.790802 0.8936294

Rx-CBT Rx 2.1 -0.0908019 4.290802 0.0621952
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O Think about it

Look at the confidence intervals in the data above (lwr = LL and upr
= UL). Notice which ones contain zero and how that is linked to the
respective p-values.

Most statistical software/programs will give you specific p-values for
each comparison. For example, in R:

diff lwr upr p.adj
CBT Rx-CBT -2.5 -4.6908019 -0.309198 0.0228923
Rx-CBT -0.4 -2.5908019 1.790802 0.8936294

Rx-CBT Rx 2.1 -0.0908019 4.290802 0.0621952

12.3.4.9 Bonferonni Correction

Sometimes you may wish to do some post-hoc comparisons, but without
doing Tukey's HSD. You may also apply a Bonferonni correction to the «
level to attempt to control for the family wise error. To do so, simply use
the following:

«

ncomparisons

So, imagine we decide post-hoc to conduct two exploratory analyses. If
our original a = .05, then our new critical value would be:
o 05

_ > 22 025
@ 2

ncomparisons
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© More about the F-distribution

The following figure represents the F-distribution for df; =2 and
df, = 27.The red region represent the most extreme 5% of the distri-
bution, which aligns with our pre-determine criteria of o = .05.

F-distribution (df1=4, df2=36)

1.00

0.75

Density

0:25 Our OCD study resulted in F=4.62.

0.00

0 1 2 3 4 5 6 7 8 9 10
F

Anything beyond the red would be considered statistically significant.

12.3.5 5. Write your results/conclusions

We conducted a one way ANOVA to determine the association between
OCD treatments and OCD severity post-treatment. The results suggest
that the group means for OCD severity are unlikely given a true null
hypothesis, F'(2,27) = 4.62, p = .0109.

Post-hoc comparisons using Tukey's HSD were conducted to evaluate
pairwise differences between the treatment groups. The results indi-
cated a statistically significant difference between the CBT group
(r =10.5) and the CBT_Rx group (z = 8.0), mean difference = —2.5,
95%C1[—4.69,—0.31], p,4; = -023. This suggests that participants in the
CBT group had significantly higher OCD severity scores compared to
those in the CBT_Rx group.

No significant differences were observed between the Rx group (z =
10.1) and the CBT group, mean difference = —0.4, 95%C[—2.59,1.79],
Paa; = -894, or between the Rx group and the CBT_Rx group
mean difference = 2.1, 95%C1[—0.09, 4.29], p,,4,; = .062.

189



12.3.6 ANOVA Model - Part Deux

| recommend returning to this section after you read the chapter on
regression.

Surprisingly, you may learn that the ANOVA is the same as regression
(both are general linear models). In our specific example above with
three treatment groups:

Y; = Bo + x1;01 + T8, + €

where y; is individual i's score on the DV, e, is the residual/error for
individual 7, §,, are regression coefficients, and z,,; are individual i's score
on the n*" variable.

What are these variables? For an ANOVA, we would use what is known
as dummy coding. In dummy coding, there will be k-1 variables, where
k is the number of groups. So, in the above example, we have three
groups. Thus, we will have k — 1 = 3 — 1 = 2 dummy variables. In dummy
coding, we choose a reference category, here we can pick CBT, and the
other groups are represented by the dummy variables. Thus, the CBT
group will score a ‘0’ on all other g variables. The other groups will score
1" on one of the dummy variables. Importantly, each group will be the
only one to score ‘1’ on the a specific dummy variable (e.g., only the Rx
group scores ‘1" on ;. As a result, an individual’s score on dummy coded
variables will change depending on what group that individual is in.

Additionally, most general linear models require an intercept, which is
typically referred to as 3,. We will include an intercept that is present for
ALL groups. Thus, each group would score a ‘1" on the intercept, indi-
cating that it is part of the linear equation for that group. The resulting
table could be:

Group | CBT | Rx | CBT+Rx
Bo 1 1 (1
B4 0 1 {0
By 0 0 |1

Dummy Coding
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As you can see, each group has a unique pattern on the dummy vari-
ables. So how does this fit within the GLM and regression? Well, let's
focus on the placebo group. First, recall our means:

Treatment Mean

CBT 10.5
CBT_Rx 8
Rx 10.1

Let's use our brains to understand how these numbers connect to
dummy coding. First, let’s consider the CBT group. Our resulting general
linear model will be:

CBT = By + (0); + (0)8,
therefore:

CBT = 8,

because anything multiplied by 0 is 0! So this is our simplified equation
for the CBT group. Our best estimate of the score of any individual in the
CBT group is the mean of the CBT group. That is, if knew an individual
was in CBT group and noting else about them, our best guess at their
OCD severity score would be the mean of the CD severity scores of the
CBT group. As a result, 3, is the mean of the CBT group (here, 10.5)!

What about the Rx group?
Rz = By + (1)5, + 05,
therefore
Rz = B, + (1)8,

Well, we know that 3, is the mean of the CBT group (10.5), and we know
the mean of the Rx group (10.1). Therefore:

Rz = 50 + 51
10.1 =10.5+ B4

By =10.1 —10.5=—-0.4
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Interesting. 3, is simply the difference in means in CBT and Rx group,
By =Tp, —Topr- | hope you can intuitively figure out what 8, repre-
sents.

One important consideration here is what group we choose as the
reference group (the one with “no” coefficient). This determines which
means are being compared through each regression parameter, S.

@ Think about it

Solve for 3, in the OCD example.

O Answers

It is the mean difference between our reference group (CBT) and the
group that is coded 1 for that variable (CBT+Rx): 2.5.

The difference between Rx and CBT+Rx is not represented in dummy
coding. We could calculate it by making either of those the reference

group.

We can also use the model to solve for an individual’s residual (error)
score. Assuming we are interested in person 7 (from the CBT group; y-).
From the above equation, we get:

Y7 = By + (0)B; + (0)B, + e,
Which simplifies to:
Y7 = By + €7

because their scores are 0 on each dummy variable. Therefore, individual
7's score is simply (3, + e;. Interestingly, 3, is simply the mean of the
CBT group and e, is that person’s deviation from the mean of the CBT
group. Here:

10 =10.5 + e,

SO

e; =10—10.5 = —0.5
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The person'’s residual score is —0.5, which is the difference between their
actual score and their predicted score using our model. Remember, our
best guess at their score is the mean.

When we cover regression, you will like see additional similarities in
ANOVA and regression. All of the analysis we will cover are linked to the
general linear model.

12.3.7 Plotting the ANOVA Results

There any many ways you can visualize the results of an ANOVA. One
way that is not recommended is the ‘dynamite plot’.

Dynamite plot:

125
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OCD Severity
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o
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CBT CBT_Rx Rx
Treatment

Bars represent the 95% Cl for each mean.

How should we visualize it? There are many ways, but box plots may be
a better method. It gives more details about the data.
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12.4 Conclusion

This chapter covered the one-way ANOVA, a statistical method used to
determine if there is a significant difference among the means of three
or more independent groups. The one-way ANOVA extends the t-test to
multiple groups and uses an F-statistic to compare the variance between
group means to the variance within groups.

12.5 ANOVA in R

If you are a PSYC3950 student, you are not required to know how to
calculate ANOVA in R and can skip this section. You will cover this
analysis using SPSS in the lab section of the course. If you are so inclined
(good for you), continue...

R can easily run the ANOVA and provide an ANOVA summary table. |
particularly like the apa.aov.table() function from the apaTables library.
It can quickly provide summary statistics:

library(apaTables)
#I named my data dat ocd
one way anova example <- aov(0CD Severity~Treatment,
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data=dat ocd)
apa.lway.table(iv=Treatment, dv=0CD Severity, data=dat ocd)

Descriptive statistics for OCD_Severity as a function of
Treatment.

Treatment M SD
CBT 10.50 2.01

CBT Rx 8.00 1.49

Rx 10.10 2.33

Note. M and SD represent mean and standard deviation,
respectively.

and an ANOVA summary table, with effect size:

apa.aov.table(one way anova example)

ANOVA results using OCD Severity as the dependent variable

Predictor SS df MS F p partial eta2

CI 90 partial eta2
(Intercept) 11602.50 1 1102.50

282.42 .000

Treatment 36.07 2 18.04 4.62 .019 .25
[.03, .42]

Error 105.40 27

3.90

Note: Values in square brackets indicate the bounds of the 90%
confidence interval for partial eta-squared

Tukey’s HSD in R
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Tukey’s HSD can be found in the stats library. You simply use your
ANOVA model as the main argument.

library(stats)
mod aov <- aov(0CD Severity ~ Treatment, data=dat ocd)

TukeyHSD(mod _aov) #I called our ANOVA model 'mod aov'

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = OCD Severity ~ Treatment, data = dat ocd)

$Treatment

diff lwr upr p adj
CBT Rx-CBT -2.5 -4.6908019 -0.309198 0.022892
Rx-CBT -0.4 -2.5908019 1.790802 0.893629

Rx-CBT_Rx 2.1 -0.0908019 4.290802 0.062195

You would interpret the last column, p adj as usual. The values have been
adjusted to account for family wise error rates.

12.6 Practice Question

You are a sport psychologist testing if the type of drink improves perfor-
mance. You provide three drinks to sprinters and measure the time to
run 100m. The following data are obtained.

ID  Drink  Speed

1 Water 9
2 Water 15
3 Water 16
4 Water 18
5 Water 8
6 Milk 19
7 Milk 19
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ID  Drink  Speed
8 Milk 18
9 Milk 25
10 Milk 20
11| Gatorade | 13
12 | Gatorade | 12
13| Gatorade | 19
14 | Gatorade 8
15| Gatorade | 15

Conduct an ANOVA to determine if any groups differ from any others.
Specifically:

e Write the null and alternative hypotheses

e Conduct appropriate omnibus test

Conduct post-hoc tests.

Calculate an effect size.

¢ Write a results section

12.7 Answers

Hypotheses

HO = Hwater = Hmilk = :ugatorade

H, = at least one different.
Omnibus

Means and F Table

Descriptive statistics for Speed as a function of Drink.
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Drink M SD
Gatorade 13.40 4.04
Milk 20.20 2.77
Water 13.20 4.44

Note. M and SD represent mean and standard deviation,
respectively.

ANOVA results using Speed as the dependent variable

Predictor SS df MS F p partial eta2
CI 90 partial eta2
(Intercept) 897.80 1 897.80

61.63 .000
Drink 158.80 2 79.40 5.45 .021 .48
[.05, .64]

Error 174.80 12
14.57

Note: Values in square brackets indicate the bounds of the 90%
confidence interval for partial eta-squared

Results

The ANOVA (formula: Speed ~ Drink) suggests that:

- The main effect of Drink is statistically significant and
large (F(2, 12) =
5.45, p = 0.021; Eta2 = 0.48, 95% CI [0.07, 1.00])

Effect sizes were labelled following Field's (2013)
recommendations.

Tukey’'s HSD

198



Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = Speed ~ Drink, data sprint)
$Drink

diff lwr upr p adj
Milk-Gatorade 6.8 0.36018 13.23982 0.038411
Water-Gatorade -0.2 -6.63982 6.23982 0.996224
Water-Milk -7.0 -13.43982 -0.56018 0.033147

o © o

Practice Question

Solve for individual 12 in the OCD example, who is part of the Rx group
and who's OCD Severity score is 12.

Answers
Y12 = Bo + (1)B1 + (0)By + ey,
Therefore:
Y12 = B + (1)B1 + ey
Filling in our beta’s from above”
12 =10.5 4 (1)(—0.4) + ey,

Therefore:
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13 Repeated ANOVA

This chapter will cover the repeated measures ANOVA, a statistical
method used to determine if there is a significant difference among the
means of three or more related or dependent groups. Unlike a one-
way ANOVA, which involves independent groups, a repeated measures
ANOVA is used when the same participants are measured under differ-
ent conditions or at different time points. The repeated measures design
accounts for the correlation between the measurements from the same
participants. For example, if we compare the heights of various children
over time, we would assume that children who are tall will grow into
adults who are tall, and children who are short will grow into adults who
are short. Or, as another example, imagine we test the impact of various
sports drink on speed. If we gave the same participant three different
sports drinks and tested their running speed after each, that person's
scores would be dependent or correlated. Fast people will typically be
fast and slower people will typically be slow, regardless of the drink
given. This dependence or correlation of observations is why the
working with repeated measures data requires specific assumptions and
analysis.

13.1 Some Additional Details

The repeated measures ANOVA is appropriate when there is one
independent variable (V) with three or more levels (e.g., conditions or
time points) and one continuous dependent variable (DV). For example,
researchers might use a repeated measures ANOVA to compare test
scores (DV) across three different time points (IV with three levels) or to

200



assess the effects of a three different treatments (IV with three levels) on
pain (DV). Importantly, the same participants are measured at each level
of the IV.

© Think about it

Sometimes a repeated measures design can be used on different
people, but when they are matched on various important character-
istics. For example, we may match a group of students based on age,
gender, 1Q, and academic achievement. In this chapter and course
we will assume the same people measured across conditions or time.

The null hypothesis for the repeated measures ANOVA posits that all
group means are equal across different conditions or time points:

Hy:py =pg=p3=... =

where k represents the number of conditions or time points. The alter-
native hypothesis states that at least one group mean is different:

H, : At least one p,; differs from another

By rejecting the null hypothesis, researchers conclude that significant
differences exist among the conditions or time points—at least one differs
from the others. Similar to a one-way ANOVA, post hoc tests are often
required to identify where these differences occur.

13.2 Key Assumptions

A repeated measures ANOVA can be conducted under certain assump-
tions. These include:

1. The data are continuous
The dependent variable should be at the interval or ratio level.

2. Sphericity
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Sphericity is a key assumption in repeated measures ANOVA and is
closely related to equality of variances in a one-way ANOVA. It refers
to the equality of variances of the differences between all possible pairs
of conditions or time points. For example, consider the following scores
representing five people who were all given three different interventions
for depressive symptoms.

ID Treatment.1 Treatment.2 Treatment.3

1 6 10 11
2 8 11 17
3 7 14 15
4 10 16 23
5 13 15 21

We can calculate the differences (one subtracted another) of each pair
of scores per person. For example, consider treatment 1 and 2:

ID Treatment.1 Treatment.2 Treatment.3 Difference 1 2

1 6 10 11 -4
2 8 11 17 -3
3 7 14 15 -7
4 10 16 23 -6
5 13 15 21 -2

We can calculate a variance of these difference scores, which would be
4.3. Well, the test of sphericity tests if the variance between ALL possible
difference scores (here, 1 — 2, 2 — 3, and 1 — 3) is similar. The repeated
measures ANOVA requires these variances be similar; Mauchley’s test of
sphericity is the formal test for this. For example, the variances of the
differences are:

1. Treatment 1 - Treatment 2 = 4.3
2. Treatment 2 - Treatment 3 = 8.7
3. Treatment 1 - Treatment 3 = 8.3

So, while the variances quite obviously are not equally, the sphericity test
is a formal test to ensure we meet or do not meet this assumption.
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In simpler terms, sphericity assumes that the relationship (or correlation)
between scores in different conditions is consistent. This assumption is
unique to repeated measures designs because the same participants
contribute data across multiple conditions, introducing dependencies
in the data. If the assumption of sphericity is violated, the repeated
measures ANOVA can lead to inflated Type | error rates, meaning there's
a higher chance of incorrectly rejecting the null hypothesis.

Mauchly’s Test of Sphericity

Sphericity can be tested using Mauchly's test of sphericity. This test
evaluates whether the variance of the differences between groups is
equal. This test has the following hypotheses:

* Null hypothesis (H,): The variances of the differences between all
pairs of conditions are equal (sphericity holds).

e Alternative hypothesis (H,): The variances of the differences are not
equal (sphericity is violated).

If Mauchly's test is significant (p < .05), sphericity is violated. When this
happens, adjustments to the degrees of freedom (df) are required to
make the test more robust. Specifically, when sphericity is violated, the
F-statistic becomes unreliable. To address this, two common corrections
can be applied:

1. Greenhouse-Geisser Correction: This conservative adjustment
reduces the degrees of freedom based on an estimated epsilon (¢) value,
which quantifies the degree of violation. Lower values of ¢ indicate
greater violations of sphericity (with e = 1 indicating perfect sphericity).
2. Huynh-Feldt Correction: This is a less conservative adjustment
compared to Greenhouse-Geisser. It adjusts the degrees of freedom
based on a different estimation of ¢, which can be slightly larger.

When reporting results of the repeated measures ANOVA, it's standard
to use corrected degrees of freedom and note which correction was
applied-when applicable. ANOVA results will typically inform you which
degrees of freedom go with which correction. Sometimes the degrees
of freedom may not be whole numbers. Don’t panic; you haven't messed
up your analyses!
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3. Homogeneity of variances

The variance within each group should be approximately equal. This
assumption is less of a concern than in a one-way ANOVA, but it’s still
important to check. As with one-way ANOVA, Levene’s test can be used
to assess this.

4. Normality of residuals

As with one-way ANOVA, it's the residuals (the differences between the
observed and predicted values) that should be normally distributed. This
can be assessed visually using a Q-Q plot or by conducting a Shapiro-
Wilks test on the residuals.

We will now go through a comprehensive example of a research project
that requires the use of a repeated measures ANOVA.

13.3 Remember Me?

You are hired by the Reach Out Center for Kids (ROCK) as a develop-
mental researcher as part of their cognitive development team. You are
tasked with conducting research investigating the changes in memory
processes across early childhood. Specifically, you believe that the
amount of ‘chunks’ of memory a child can retain increases as children
grow. You decide to develop a memory test to assess any changes
over time. After reading the literature, you and your team believe that
memory will improve as children develop. Importantly, you believe that
notable changes will be evident between children when they are 4, 6,
and 8-years old.

13.3.1 1. Generating hypotheses

The main null and alternative hypotheses for this repeated measures
ANOVA can be converted into a statistical hypothesis stated as (for the
null):

HO : :u4yo = /’L6yo = /’L8yo
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And (for the alternative):

H, : At least one p, differs from the others.

13.3.2 2. Designing a study

You and your team plan out a research study. The method follows:

Participants: Participants were recruited from local schools near ROCK.
Posters were created in collaboration with the school board, ensuring all
parties agreed on recruitment materials. Eligible participants were chil-
dren who were typically developing and had no reported neurological
or developmental disorders. Children were tested when they are aged
4, 6, and 8 years old.

A power analysis was conducted using your literature review and indi-
cated that a total of 12 children will be needed to achieve a power of
1- =28

Materials: Tyler's Memory Test (TMT; Pritchard, 2024) was used to assess
memory. The TMT is a child-friendly memory that measures children’s
total overall memory. The tasks involved recalling: items from a story pre-
sented with accompanying pictures, series of digits, and abstract shapes
through drawing. The test is standardized and compared children’s
scores to same-aged peers. Memory performance was scored out of 10.
The TMT has shown suitable reliability and validity (Pritchard, 2024).

Procedure: Posters advertisements were shared on ROCK's website, in
addition to the researchers’ social media pages. The poster focused on
caregivers of 4-year olds and indicated they could participate in a study
on memory. Interested caregivers were provided an informed consent
form and, once consenting, completed a brief screener to ensure
children did not meet criteria for neurological or other psychological
disorder. The resulting participants completed three memory sessions
(at age 4, 6, and 8 years old) at ROCK's testing center. All testing was
completed by PhD-level psychologists. Parents provided debriefed after
each testing session.
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The ethics review board at Grenfell Campus reviewed the project and
ethics submission and approved the study.

13.3.3 3. Collecting data

The study was completed as described; a final sample size of 8 was used.
The following data were obtained:

ID Age4 Age 6 Age8

1 3 5 7

OIN|IO~caBR|IWIN
N|—=|P,|lPPIlW|W|>
Wwlh|h|hlwWwlO|W
O|N|O|N|oo|u1| oo

Short and long form data

The data above is in short form-think from top to bottom. In most
analyses, long form data is preferred. Each analysed unit of data should
have a row. In the above, each row has three units bring analysed; there
are three memory scores per row. While it might make sense to have
each child represented as a row, it's actually better to have each exper-
imental unit (a memory score) be a row. Here’s how the data would look
in long form:

ID Age Memory Score

1 [Age 4 3
Age 6
Age 8
Age 4
Age 6
Age 8
Age 4

WINININ|—]—-
Wl W|Ph|N|O
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ID Age Memory Score

3 |Age b 5
Age 8
Age 4
Age 6
Age 8
Age 4
Age 6
Age 8
Age 4
Age 6
Age 8
Age 4
Age 6
Age 8
Age 4
Age 6
Age 8

OO |0 |ININ|IN[ov|Ov|[cjnjnja BBl W
OIWIN|IN|P|=2(O|R|HINYN|P|P|OfWW]|O

13.3.4 4. Analyzing data
Our Model

In previous examples of ANOVA, we have had different individuals for
each level or condition. Recall that in the one way ANOVA example, each
individual received one type of therapy. However, sometimes it makes
sense to put the same individuals in each condition to assess change or
differences within the individuals. Repeated measures do just that.

As such, our model will look similar:

memory = age + error

and for each individual:

Y, = age; +e;
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13.3.4.1 Testing Assumptions
Sphericity

To allows us to continue with F-tests, we must test the assumption of
sphericity. Recall that this assumption purports that the variance of the
differences between all conditions is the same.

An easy way to visualize this is by plotting difference scores. In our
example, we will have three difference scores (i.e., age 4 - age 6; age 6
- age 8; age 4 - age 8).

ID Age 4 Age 6 Age 8 four_minus_sisix_minus_eighdur_minus_eig

2 4 3 8 1 -5 -4
3 3 5 5 -2 0 -2
4 3 3 8 0 -5 -5
5 4 4 7 0 -3 -3
6 4 4 9 0 -5 -5
7 1 4 7 -3 -3 -6
8 2 3 8 -1 -5 -6
8 8 8
7 7 7
6 6 6
5 5 5
4 4 4
© 3 © 3 © 3
< 2 © 2 < 2
~ 1 ~ 1 ~ 1
S o HHHH 0®®--- S o0---0-----—- 8 o FHHHHE
5.0 @ 520 5. e
-2 -
5 o @ 5 @ 0 5 e
-4 -4 100
-5 5 O O O O 5 @ O
-6 -6 6 (O)O}
-7 -7 7
-8 -8 8
12345678 12345678 12345678
Participant Participant Participant

In the visualization each person is represented as a dot (the x-axis).
The y-axis represents each person'’s difference score across the various
IV levels. We want to look at the dispersion of the dots along the y-
axis, not how close they to the lines. The spread of the points should
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appear similar across the group differences. The variance of each of the
differences is:

® Four - Six: 1.839
e Six - Eight: 3.429
e Four - Eight: 1.982

We can test the assumption using Mauchly’s test of Sphericity, which
hypothesizes (for a three condition repeated measures deign):

L2 2 2
HO:03 p=04 ¢c=0p ¢

and

H1 : at least one var not equal

We will not be concerned with the formal calculations of Mauchly’s test;
rather, our statistical software can conduct it for us.

For our data:

Effect W p p<.05
2 Age 0.823509 0.558478

Recall that the null hypothesis is that the variances are equal; thus,
we want p > .05 for Mauchly’s test, although it's not a complete deal-
breaker if we violate this assumptions. Regardless, our results indicate
that we have not violated this assumption and can proceed as intended.

Writing up Mauchly’s Test

We used Mauchly’s test to check the assumption of sphericity and the
results indicate that the assumption is not violated, p = .558.

The Assumption is Violated: Now What?

You can apply two corrections to the data that account for violations of
sphericity. These are the Greenhouse-Geisser or Huynh-Feldt correc-
tions.

As we have done in the last two chapters, we will partition the various
into various sub-components to determine the appropriate F statistic.
The following holds:
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Total Variance

(SST)

/

o~

Variance Between Participants
(SSB)

Variance Between Participants
SSW)

/ | \

Variance due to Experiment

(SSM)

Variance due to Error

(SSE)

You may recall that for independent ANOVAs the individuals in each
condition were different. For repeated measures, the individuals will cut
across all conditions. So why would they score differently on the same
dependent variable? From the figure above, some of the differences
may be due to the experiment, while others are just error. It may be
helpful to re-conceptualize how we consider variance as the variance
between and the variance within an individual. Because all people are
in all conditions, changes within an individual can be attributed to the

Figure 9: Flowchart

experimental condition and some error.

Let’s calculate some of these and it may help them make sense.

13.3.4.2 SST

Our total sum of squares is no different than a one way ANOVA.

n

SST =" (2; — Tyrana)

with N — 1 degrees of freedom.

Also, if you know the variance, it can be calculated as:

=1

SST = s2 (N —1)

overall

Qur variance in all scores is 4.717 with n = 24. Thus:

SST = 4.717(24 — 1) = 108.49
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13.3.4.3 SSW

Here we will depart from our independent ANOVA method. We will
calculate the SSW by looking at the deviations within individuals (rather
than within groups, which was error in the independent ANOVAs). Recall
our data:

ID Aged4 Age 6 Age8

1 7

N|—-=|,|PP|lWW|PA~|W

Wlh|Ph|Pj|W|lOW]|O
O|N|O|N|oo|u1|oo

OIN|IO~CABR|WIN

So, let's consider individual 1. Their mean score is 3¥5+7 = 5. And their
deviations are:

S5,

=B85+ (5-5%4+(7T-5)>=38

We do this across all individuals! The resulting formula is expressed as:

n

SSW = Z (xz't_fi)z

1=1,t=1

where z,, is the score for individual 7 at time ¢ and Z; is the mean for
individual ¢ across all conditions. If you can quickly get the variances, you
could also use the formula:

SSW =>"s?(n, —1)
1=1

For us, we have:

ID Variance
1 4
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ID Variance

2 7
1.333
8.333
3
8.333
9
10.333

OIN|Ic~cO AW

and thus, because each individual has three time points:

SSW = 4(2) + 7(2) + 1.33(2) + 8.33(2) + 3(2) + 8.33(2) + 9(2) + 10.33(2) = 102.64

13.3.4.4 SSM

The variance of the model, SSM, which is between groups (i.e., exper-
imental conditions) is calculated the same way as before).

i
SSM = Z nj (fj o Eoverall)2
j=1

For us, the means are:

Age Mean n
Aged| 3 |8
Age 6(3.875|8
Age 87.375|8

Therefore, because we know our grand mean is 4.75:

SSM = 8(3.00 — 4.74)2 + 8(3.875 — 4.74)% + 8(7.375 — 4.74)% = 85.74

13.3.4.5 SSE

Our error is calculated by removing the SSM from within individuals. Re-
member, individual scores vary because of the experimental conditions
(i.e., SSM) and due to error (i.e., random individual fluctuations). Thus,
the error can be calculated by subtracting SSM from SSW.

SSE =SSW —SSB
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SSE =102.64 — 85.74 = 16.90

Perhaps now you see an added benefit to repeated measures designs.
We have effectively reduced our error term, which will reduce the mean
squared error, which should increase our F statistic.

13.3.4.6 Mean Squares

Our mean squares are calculated the same as before. However, our df,
is calculated by df, = df,, —df,, where df, =n;(df,). We have eight
individuals with df, = 2, therefore df, = 8(2) =16 and df, =16 —2 =
14

SSB
MSB =
df,
_ 8T sy
2
and
SSE
MSFE =
df,
16.90
= —=1.2
11 07

13.3.4.7 F Statistic

Our F statistic is calculated the same way as before, a ratio of MSB and
MSE.

_ MSB 4287

F= MSE  1.207

= 35.52

We can use an F-distribution table to find out our approximate p-value.
We determine that F,,.;,(2,14) = 3.7389.

crit
However, remember, an omnibus ANOVA does not tell us where the
differences are. We have three groups, so we must conduct post-hoc

analysis. We looked at this in the one way and factorial ANOVA, so please
refer there.
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Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = "Memory Score’ ~ Age, data = dat child long)

$Age

diff lwr upr p adj
Age 6-Age 4 0.875 -0.436746 2.18675 0.235571
Age 8-Age 4 4.375 3.063254 5.68675 0.000000
Age 8-Age 6 3.500 2.188254 4.81175 0.000003

As you can see, it seems that memory at age eight (z,,,.s = 7.38, SD =
1.19) is higher than both ages four (z,, .., = 3.00, SD = 1.07, p < .001) and
agea = 3.88, SD = 0.84, p < .001). However, memory at age four did

not differ than at age six (p = .236).

six (T

13.3.4.8 Effect Size

Effect sizes for repeated measures ANOVA are more difficult to calculate
oo . 2

by hand. Specifically, we may use generalized eta squared (n;) to account

for our repeated measures.

We can get this from statistical software. For this example:
# Effect Size for ANOVA (Type I)
Group | Parameter | Eta2 (generalized) | 95% CI

Within | Age | 0.79 | [0.57, 1.00]

- Observed variables: All
- One-sided CIs: upper bound fixed at [1.00].

Thus, differences in memory across ages would be classified as a large
effect, n2 = .79, 95%C1[.57,1.00].

13.3.5 5. Write your results/conclusions

Recall your hypothesis from above: children’s scores on the [memory]
test will improve as they grow over time.
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We conducted an ANOVA to test whether age has an affect on a child’s
memory. We used Mauchly's test to check the assumption of sphericity
and the results indicate that the assumption is not violated, p = .558.
The results of our omnibus ANOVA suggest that age has a strong and
statistically significant effect on a child’s memory, F/(2,14) = 35.48, 12 =
79, 95%CI[.63,1.00], p < .001.

Post-hoc results indicated that memory at age eight (z,,.5 = 7.38, SD =
1.19) is higher than both ages four (Tygeq = 3.00, SD = 1.07,p < .001) and
SiX (T 404 = 3.88, SD = 0.84, p < .001). However, memory at age four did
not differ than at age six (p = .236).

13.4 Conclusion

This chapter covered the repeated measures ANOVA, a statistical
method used to determine if there is a significant difference among the
means of three or more related or dependent groups. Repeated mea-
sures ANOVA is used when the same participants are measured under
different conditions or at different time points, which accounts for the
correlation between the measurements from the same participants.

13.5 Repeated Measures ANOVA in R

We can use the same ez library to conduct our repeated measures
ANOVA in R. Our data will need to be in long format, with each
measurement having a row as opposed to each individual. The following
data is in long format.

ID Age Memory Score

1 |Age 4 3
1 [Age b 5
1 |Age 8 7
2 |Age 4 4
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ID Age Memory Score

2 |Age 6 3
Age 8
Age 4
Age 6
Age 8
Age 4
Age 6
Age 8
Age 4
Age 6
Age 8
Age 4
Age 6
Age 8
Age 4
Age 6
Age 8
Age 4
Age 6
Age 8

OO0 |ININ [NVl BAIRARITWOWOWIWIN
OIWIN|IN|P|=|O|R~|PIN|P|P|lO|WlwWw|OI|lOI|W]| 0

As you can see, each individual has three rows, one for each time of
assessment.

The ezANOVA() function will be used. It will automatically conduct
Mauchly’s test because it picks up we have a ‘within’ factor:

$ANOVA
Effect DFn DFd F p p<.05 ges
2 Age 2 14 35.4828 3.29759e-06 * 0.790323

$ Mauchly's Test for Sphericity’
Effect W p p<.05
2 Age 0.823509 0.558478
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$ Sphericity Corrections’

Effect GGe p[GG] p[GG]<.05 HFe p[HF]
p[HF]<.05
2 Age 0.849986 1.52556e-05 * 1.09431 3.29759e-06

*

13.6 Practice Questions

You are a educational psychologist testing the efficacy of a new reading
program for children who are at-risk for developing a reading disorder.
Because assessments are time-consuming, expensive, and with a long
wait-list, you are asked to implement a program ASAP and determine it’s
efficacy. You develop a program based in the literature and hypothesize a
significant improvement in reading ability. You measure reading ability (a
measurement that uses t-scores) prior to starting the program, 1 month
after being in place, 2 months after being in place (the conclusion of the
program), and 3 months (one month after conclusion).

You recruit 6 individual for the program and obtain the following data:

ID TO_Month T1_Month T2 _Month T3 _Month

1 38 46 42 42
2 44 51 52 47
3 48 53 50 51
4 39 42 45 35
5 40 42 41 39
6 37 42 42 43
13.7 Answers
$ANOVA
Effect DFn DFd F p p<.05 ges
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2 Time 3 15 6.65605 0.00447067 * 0.166897
$ Mauchly's Test for Sphericity’

Effect W p p<.05
2 Time 0.377146 0.615089

$ Sphericity Corrections’

Effect GGe p[GG] p[GG]<.05 HFe p[HF]
p[HF1<.05
2 Time 0.622618 0.0170215 * 0.979851 0.00479621
*
47
46
S 45
E 44
2
g 43
s
42
41
40
Pre Month 1 Month 2 Month 3
Time

Additional Readings

e Lakens (2013)
e Olejnik & Algina (2003)
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14 Factorial ANOVA

This chapter will cover the factorial ANOVA, a statistical method used
to determine whether there are differences among group means when
there are two or more independent variables (IVs). We have covered the
one-way ANOVA, which examines the effect of a single IV on a depen-
dent variable (DV). A factorial ANOVA expand this analyses and allows
researchers to study the main effects of each IV and the interaction effect
between them. Interactions are when the effect of one IV on the DV
depends on the level of another IV. The IVs are also sometimes called
factors.

Factorial ANOVAs may seem more complex, but this is necessary to
model the complexity of the world we live in. Rarely are psychological
phenomenon impacted by a single variable. Instead, these phenomenon
are likely impacted by multiple interacting factors. For example, imagine
we want to examine the impact of teaching method (lecture vs. group
discussion) and class size (note that class size could be a ratio variable,
but we will consider it as two categories: small [class size less than 20]
vs. large [20+]) on student performance. Here, teaching method and
class size are two Vs (both categorical), and student performance is the
DV. A factorial ANOVA would tell us whether:

e Teaching method alone influences performance (main effect of teach-
ing method),

e Class size alone influences performance (main effect of class size),

e The effect of teaching method depends on class size (interaction
effect).

219



14.1 Some Additional Details

A factorial ANOVA is appropriate when there are two or more categor-
ical/nominal independent variables, each with two or more levels, and
one continuous dependent variable. For example, researchers might use
a 2x3 factorial ANOVA to examine the effects of diet type (IV1; vege-
tarian vs. non-vegetarian) and exercise frequency (IV2; none, moderate,
high) on weight loss (DV). This design allows for a more comprehensive
understanding of how multiple factors work together to influence out-
comes.

O Think about it

It is possible to have both between and within (repeated) Vs in
ANOVA. When you have 2+ IVs that are between subjects, we call it
a factorial ANOVA. When there are 2+ within/repeated factors, it is
called a fully repeated measures ANOVA or a within-within ANOVA.
When there are both between and within factors, it is called a mixed
ANOVA.

This chapter covers factorial ANOVA and we will cover mixed ANOVA
in the next chapter. Fully repeated measures ANOVA are not in the
current edition, but may be added in a later edition.
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© What the heck is a 2x2 ANOVA?

You will encounter “2x2", "3x2x2", “2x3x4", or any other combina-
tion of numbers in the context of ANOVA. It is quite simple to
understand. The number of numbers indicates the number of factors,
while the numbers themselves represent the number of levels within
each factors.

For example, a 2x3 ANOVA has two factors (two Vs, which means
two main effects), because there are two numbers: a 2 and a 3. The
first factors has two levels and the second factor has three levels.

As another example, consider a 4x3x2 ANOVA. In this analysis there
are three factors (three Vs, which means two main effects). The first
has four levels, the second has three levels, and the third has two
levels.

The null hypothesis for a factorial ANOVA posits that there are no main
effects or interaction effects among the independent variables. In other
words, the population means are equal across all combinations of factor
levels:

H, : All group means are equal across the levels of Factor A and Factor B

More commonly, and probably easier to understand, a two-way factorial
ANOVA typically involves three separate null hypotheses:

1. Main effect of Factor A:
Hop tpigr = taz = - = Bagn

Here, we are proposing that the means do not differ across levels (from
levels 1 to n) of Factor A.

2. Main effect of Factor B:
Hypg:ppy = pigs = .. == gy,

Here, we are proposing that the means do not differ across levels (from
1 to m) of Factor B.
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O Think about it

Why does one factor have an n number of levels and another have
m levels? Because the IVs can have a different number of levels, the
term n and m are used. One |V can have 2 levels (n = 2) and the other
IV can have a different number of levels such as 3 (m = 3).

3. Interaction effect (A x B):

H, 45 : No interaction between A and B

Here, we are proposing that the effect of Factor A does not depend on
Factor B.

The alternative hypotheses state that:

1. Atleast one main effect exists (Factor A or Factor B influences the DV)
2. There is an interaction effect (the effect of one factor depends on
the other).

Rejecting any of these null hypotheses indicates significant differences.
When significant effects are found, post-hoc tests or simple effects
analyses are often required to determine where these differences occur.
More to some.

14.2 Key Assumptions

Many of the assumptions in the factorial ANOVA overlap with our pre-
vious chapters. Regardless, a factorial ANOVA can be conducted under
the following assumptions:

1. The data are continuous
The dependent variable should be measured at the interval or ratio level.

2. Independence of observations
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Each observation should be independent of the others. This is critical
because factorial ANOVA typically involves different participants in each

group.
3. Homogeneity of variances

The variance within each combination of factor levels should be approx-
imately equal. This can be assessed using Levene'’s test.

4. Normality of residuals

The residuals (differences between observed and predicted values)
should be approximately normally distributed. This can be checked
visually (e.g., Q-Q plot) or with tests like Shapiro-Wilk.

We will now go through a comprehensive example of a research project
that requires the use of a factorial ANOVA.

14.3 Rate My Physician

You are hired by the regional health authority to conduct research
regarding patient-provider satisfaction. You consult the literature and
theorize that female physicians are more compassionate and that pa-
tients will rate visits with female physicians higher than male physicians.
Furthermore, theory suggests that men are more comfortable around
female physicians than male physicians and will, thus, rate these visits as
more satisfactory.

14.3.1 1. Generating hypotheses

You hypothesize that:

1. Participants will be more satisfied with visits from female physicians
compared to male physicians.

2. There will be an interaction between patient and provider gender,
such male patients will rate females physicians higher than male
physicians, but female patients will not have such a pattern.
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© Translating Hypotheses

When translating these conceptual hypotheses into statistical hy-
potheses, it may be helpful to think of each group as a cell on a
contingency table. Each group will have a mean. We will consider
patient gender as the first subscript below the mean (e.g., 1,,, or ;)
and provider gender as the second subscript below the mean (e.g.,
t.m or p ). A dot will indicate the collapsed grouping of a specific
factor. Given this:

® 4. is the mean satisfaction rating of all male patients (n = 20)

* 1y is the mean satisfaction rating of all female patients (n = 20)

® . .. is the mean satisfaction rating of all patients who saw a male
physician (n = 20)

* 4 s is the mean satisfaction rating of all patients who saw a female

physician (n = 20)

Lmm 1S the mean satisfaction rating for male patients who saw a

male physician (n = 10)

® [i,,s is the mean satisfaction rating for male patients who saw a
female physician (n = 10)

® s, is the mean satisfaction rating for female patients who saw a
male physician (n = 10)

* i is the mean satisfaction rating for female patients who saw a
female physician (n = 10)

Thus, our statistical hypotheses that align with conceptual hypotheses
above are:

1. Participants will be more satisfied with visits from female physicians
compared to male physicians.

Hy : K= Hm
Hy oy po,

Note we will use a two-tailed test, hence the #+ as opposed to >.
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2. There will be an interaction between patient and provider gender,
such male patients will rate females physicians higher than male
physicians, but female patients will not have such a pattern.

Breaking apart this null hypothesis, it means that the difference that
male patients rated male versus female physicians is the same as the
difference that female patients rated male versus female physicians.

The alternative hypothesis would be
Hy ¢ fopmn = M F Hopm — Ky

Breaking apart this alternative hypothesis, it means that the difference
that male patients rated male versus female physicians is not the same as
the difference that female patients rated male versus female physicians.
So if male patients rated female physicians more positively then p,,,,. —
s < 0(i.e., be less than 0). But if female patients did not rate physicians
differently, then Ppm — tpp=0(ie., should be zero). Thus, the two sides
of the above hypotheses are not equal.

14.3.2 2. Designing a study

You and your team plan out a research study. The method follows:

Participants: Participants were recruited from the Corner Brook region
through advertisements posted in local community centers and online
platforms. Recruitment materials were approved by the regional health
authority. Eligible participants were adults (18+) who had an upcoming
medical appointment with a physician. A total of 40 participants were
recruited: 20 male and 20 female patients.

A power analysis based on prior literature indicated that a sample size
of 40 participants would achieve a power of

1—8=.80

for detecting medium-sized effects in a 2x2 factorial design.
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Materials: A Patient Satisfaction Questionnaire was developed for this
study. The questionnaire included items assessing overall satisfaction
with the medical appointment (e.g., communication, empathy, comfort
level). Responses were scored on a scale from 1 to 40, with higher scores
indicating greater satisfaction. A total sum score was used to represent
total patient satisfaction. The questionnaire demonstrated acceptable
reliability in pilot testing.

Procedure: Participants were informed about the study through adver-
tisements and provided consent prior to participation. After their next
medical appointment, participants completed a short survey that asked
patient to:

1. Indicate the gender of their physician (male or female),
2. Complete the Patient Satisfaction Questionnaire.

Thus, we have two independent variables (IVs)-patient gender and
provider gender-and one dependent variable (DV)-satisfaction. There
was an even split in participants seeing a male versus female physician.
This resulted in four groups based on the combination of patient gender
and provider gender: * Male patient x Male physician (n = 10) * Male
patient x Female physician (n = 10) * Female patient x Male physician
(n = 10) * Female patient x Female physician (n = 10)

Surveys were completed privately and returned to the research team. All
data were anonymized. The study was reviewed and approved by the
Grenfell Campus Ethics Review Board in collaboration with the regional
health authority.

14.3.3 3. Collecting data

The study was completed as described. You obtain the following data:

ID Patient Provider Satisfaction

1 Male Male 21
2 | Male Male 18
3 | Male Male 20
4 | Male Male 19
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ID Patient Provider Satisfaction

5| Male Male 23
6 | Male | Female 29
7 | Male | Female 29
8 | Male | Female 30
9 | Male | Female 27
10| Male | Female 29
11| Female| Male 25
12 | Female | Male 26
13| Female| Male 28
14 | Female | Male 25
15| Female| Male 22
16 | Female | Female 22
17 | Female | Female 26
18 | Female | Female 25
19 | Female | Female 18
20 | Female | Female 19

Which can be represented in a figure as:

30 (]
(]
28 A
(]
o 28 () A _
-% ) VAN Provider
.g 24 @ Female
g A /\ Male
22 ("] A
A
20 A
e A
18 ) A
Female Male
Patient

In the last chapter, we investigated the efficacy of four treatment for
obsessive compulsive disorder. In that example, each individual could
only be in one group (i.e., someone received CBT or Rx). In the example
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we just introduced regarding visit satisfaction, we have two IVs. That is,
an individual has a value on both patient and provider gender. To account
for this new model, we must extend our knowledge of the one factor
ANOVA into a factorial ANOVA.

The various means of our data can also be summarized in a table:

Means and standard deviations for Satisfaction as a function of
a 2(Patient) X 2(Provider) design

Provider
Female Male Marginal
Patient M SD M SD M SD

Female 22.00 3.54 25.20 2.17 23.60 3.24
Male 28.80 1.10 20.20 1.92 24.50 4.77
Marginal 25.40 4.35 22.70 3.27

Note. M and SD represent mean and standard deviation,
respectively.

Marginal indicates the means and standard deviations pertaining
to main effects.

© Marginal Means

A marginal mean refers to the average of cell means across the levels
of one factor, ignoring the other factors. For example, the table above
shows that the marginal mean of female patients is 23.60. This mean is
calculated across all provider genders. We can compare the marginal
means to quickly identify potential patterns in the data.

Compare the marginal means of the provider IV (i.e., male vs. female
providers); is there potentially a difference?

Our Model

We extend the GLM to represent how we will analyse the data. Recall
that the basic structure is:
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outcome, = model + error;
And our current model will be:
Y; = By + 101 + 1 0s + T1,%9; 85 + €,

Where:

y, is the satisfaction (DV) score for individual 1,

x; is the gender of individual 1,

z,; is the gender of the provider that individual i visited, and
The s are the associated coefficients.

Note that z,z,; is simply individual i's scores on z; ND z, multiplied
together. Some books or references may refer to this as x5, where x5, =
Ty; X Ty;. Because our Vs are nominal variables, we will use dummy
coding. Remember: in dummy coding we have k — 1 variables for each
level of a factor, where k is the number of levels. Each of our two IVs have
two levels, so they each require one variable to represent them. Thus,
a patient who is male would score 1 on the patient variable, whereas a
female would score 0. Similarly, a provider who was male would score a
1 on the provider variable, whereas a female provider would score a 0.
The resulting summary table may be helpful:

Patient Provider Mean SD x1 x2 x1x2
Female | Female | 22 [3.54( 0| 0 0
Female| Male 252 12170
Male | Female | 28.8 | 1.1 | 1
Male Male 20.2 [1.92] 1

1 0
0| O
1 1

If you recall from the last chapter, we can determine what each coefficient
would be. Using the equation and the table, let’s figure out what each
coefficient would be. First, for female patients and female providers:

Y; = By + 161 + 185 + T1;%9;05 + €;

The above represents the equation for each individual, which is why
it includes error. However, for a group of female patients with female
providers:
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FF = o+ (0)8; + (0)85 + (0)(0)85 = By

Since we know the mean of the female (patient)-female (provider) group
is 29.00, we know that S, = 22.00. Second, we can solve the equation
for female patients (z; = 0) with male providers (z, = 1).

FM = 8,4+ (0)B; + (1)B5 + (0)(1)85 = By + B

Since we know that 8, = 22.00 and the mean of female (patient)-male
(provider) is 25.2, we can determine that:

FM = 6y + B,

and

By = FM — B, = 25.20 — 22.00 = 3.20

O Think about it

Before moving, on, try to solve the full equation (i.e., get the values
for the other coefficients in the model).

Recall:
Ys = Bo + 101 + 1382 + 1,200 + €
Answer
Yi = Bo + @101 + 1385 + x13%2:03 + €
y; = 22.00 4+ 1,;(6.80) + x5,(3.20) + z,,;x5,(—11.80) + ¢,

Understanding this will help you understand regression models in a
few chapter.

The Interaction

How might you interpret the above? Interactions may seem intimidat-
ing, but with some practice you can intuitively understand what they
mean. Our interaction term, 85 = —11.80, indicates that the relationship
between satisfaction and patient/provider differs between men and
women. That is, when a female patient rates a male versus female
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physician, we can expect, on average, a 3.20 increase in satisfaction. This
is represented through 3, = 3.20. However, when a male patient rates
a male instead of female physician, we can expect, on average, a 8.60
decrease in satisfaction. This is represented through 8, + 83 = (3.20) +
(—11.80) = —8.60.

Ultimately, an interaction indicates that the relationship between two
variables (typically, an IV and DV) depends on a third variable (typically,
another 1IV). One way to help understand and explain interactions is
through figures. Consider the following figure that plots the means of
each our our four groups:

Provider @ Female A\ Male

NN N NN
S~ OO0 O N ©© ©

Mean Satisfaction
N
w

e

Female Male
Patient

N
N

N

>

In line with the tip above, the relationship between provider gender and
satisfaction differs depending on patient gender. Specifically, female pa-
tients reported more satisfaction in appointments with male physicians
than female physicians, but the reverse occurred for male patients. Male
patients reported more satisfaction with female physicians than male
physicians. However, we would still need a formal analysis to determine
which groups differ from another in a statistically significant way.

Another way to determine whether an interaction is occurring is to view
the slopes of the lines. Parallel lines typically indicate no interaction. As
the lines become more perpendicular, an interaction is more evident.
For example, consider the following figures and whether an interaction
likely exists. Note: these are example, not exhaustive. Also, recall that
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our IVs are categorical/nominal. Therefore, don’t let the connecting lines
give the illusion of a continuous variable.

Mean

Level 1

22
21
2

Possible Interaction 2

V2 @ Levell 4 Level2

No Interaction Possible Interaction 1

Level 2 Level 1

V1

<

Possible Interaction 3

Level 2

Importantly, we need to conduct formal tests to determine if these data
indicate a relationship between our IVs and DVs.

14.3.4 4. Analyzing data

In the last chapter, we partitioned the variances and deviations into some
sub-components. Specifically, we had:

SST =SSB+ SSE

When we have more than one IV, we need to partition the variances up
slightly differently. In the one way ANOVA, we had:

Total Variance
(SST)

N

(SSB)

Variance Exaplained by Model

Residual/Error Variance

(SSE)

Figure 10: Flowchart

However, in factorial ANOVAs (using the example above), we have:
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Total Variance

(SST)
Variance Exaplained by Model Residual/Error Variance
(SSB) (SSE)
Variance Explained by IV1 Variance Explained by 1V2 Variance Explained by Interaction
(SSB1) (SSB2) (SSB1x2)

Figure 11: Flowchart

14.3.4.1 SST
Our total sum of squares is no different than a one way ANOVA.

n

SST =" (2; — Typrana)

=1

with N — 1 degrees of freedom. For our example, the mean is 24.05.
Thus:

SST = (21 — 24.05)2 + (18 — 24.05)2...(19 — 24.05)% = 302.95

14.3.4.2 SSB

We can calculate the total SSB the same way we did for a one factor
ANOVA:

S _ 2
SSB = an (xj — xgmnd)
j=1
with k£ — 1 degrees of freedom. Although we have two IVs, we want to

consider each cell a group. One way to help you visualize this is a table.
For our patient-provider example:

Provider

Female |Male
Patient | Female [z, —22.0 | 7, = 25.2
Male |z, =288|z, =20.2
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Thus, we will have four cell to calculate SSB. Recall, our grand mean is
24.05 and the group means are above.

SSB =Y n,(7; - T yrand)
=1

= 5(22.0 — 24.05)2 + 5(25.2 — 24.05)? + 5(28.8 — 24.05)% + 5(20.2 — 24.05)? = 214.55

Now, we will discuss how to break up the SSB into it's various sub-
components.

14.3.4.2.1 IV1 - Patient Gender

We can calculate the SS for IV1 the same way we would for a one factor
ANOVA. Consider only the patient’s gender. | have collapsed the table
from above to account for this.

= 23.60

patientf —

=24.5

Patient | Female
Male

8

8

patientm

In the last chapter, you learned that we could calculate the SSB by:

SSB

— _ 2
patient — n; (mj - mgrand)

M-

n=1

with j — 1 degrees of freedom (i.e., the number of groups in that factor
minus 1). With our data:

SSB

patient —

10(23.60 — 24.05)2 + 10(24.50 — 24.05)% = 4.05

14.3.4.2.2 IV2 - Provider Gender

We can calculate the SS for IV2 the same way we would for a one
factor ANOVA. Consider only the provider’s gender. | have collapsed the
original table from above to account for this.

Provider
Female Male
Tproviderf = 2940 Tproviderm = 22.70

and, thus:
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J

— — 2

SSBprom'der = E :nj (xj - xgrand)
n=1

with j — 1 degrees of freedom (i.e., the number of groups in that factor
minus 1). With our data:

SSB

provider

= 10(25.40 — 24.05)2 + 10(22.70 — 24.05)% = 36.45

14.3.4.2.3 Interaction - Patient X Provider

Now here comes the hard part! Kidding. You know that SSB = sum of
all IV components including interactions. We can easily calculate the
SSB by subtracting our two main factors from our total SSB.

interaction

interaction

SSB

interaction

= 214.55 —4.05 — 36.45 = 174.05

Similarly, the interaction term df are the SSB minus main effect df.
dfinteraction = Afssp — dfrvi — dfrve
here:
dfinteraction =3 —1—1=1

14.3.4.3 SSE

The last thing we need is the SSE for the errors/residuals. You recall that
our formula for SSE is:

A shortcut method may be to use:

SSE = Zs?(nj — 1)

J=1

(the sum of the variances multiplied by n — 1 for each group). The vari-
ances for each of the groups for us is:
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Patient Provider Variance Size

Female | Female 12.5 5
Female| Male 4.7 5
Male | Female 1.2 5
Male Male 3.7 5

Therefore, our SSE is:
SSE = 12.5(4) + 4.7(4) + 1.2(4) + 3.7(4) = 88.40

14.3.4.4 Mean Squares

Our mean squares are calculated the same as before, matching each SS
with their respective df.

SS atient 4.095

M‘gpatient = dfp = 4.05
patient
SS rovider 36.45
MSprom’der = P d = = 36.45
dfprovider 1
MSinte'raction = i?interactz’on = 17?-05 = 17405
interaction
and fOf' our error:
MS B SSE _88.40_5525
error ~ dfemnof,- - 16 — Y.

14.3.4.5 F Statistic

The F statistics will be calculated the same way as a one way ANOVA.
However, we will now have three tests: one for each main effect and
interaction.

MS. .. 4.05
F .= patient =0.733
patient MSE 5.525
MS. . 36.45
_ provider .
Fyrovider = MSE  5.525 0.60
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MS. . 174.05
IO ‘ _ interaction __ = 31.50
interaction MSE 5.525

The p-value for each statistic can be calculated for each F statistic using
an F-Distribution table. Find a table here and a calculator here. However,
most statistical software/programs will provide the appropriate statistics
and p-values. For example, in R:

The ANOVA (formula: Satisfaction ~ Patient * Provider) suggests
that:

- The main effect of Patient is statistically not significant
and small (F(1,
16) = 0.73, p = 0.405; Eta2 (partial) = 0.04, 95% CI [0.00,
1.00])
- The main effect of Provider is statistically significant
and large (F(1, 16)
= 6.60, p=0.021; Eta2 (partial) = 0.29, 95% CI [0.03, 1.00])
- The interaction between Patient and Provider is
statistically significant and
large (F(1, 16) = 31.50, p < .001; Eta2 (partial) = 0.66, 95%
CI [0.40, 1.00])

Effect sizes were labelled following Field's (2013)
recommendations.

14.3.4.6 Effect Size

We will use an effect size similar to the one we used for one way ANOVA.
However, we will adjust the formula to account for only the ratio of
variance explained by a factor relative to the unexplained variance. This
effect size is called partial eta squared (12).

2 _ SSfactor
np SSfactOT_'_SSE

For patients:

SS

patient

2
" =55 viens + SSE

— 4.05/(4.05 4 88.40) = .043
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For providers:

SS ..
2 provider
np = = 36.54/(36.45 + 88.40) = .293
P SSp'rom’der + SSE
For the interaction:
n = SSinteraction _ _ 174.05/(174.05 + 88.40) = .663
P SSinteractz'on + SSE

14.3.4.7 Post-hoc Analysis

Remember, the omnibus ANOVA tells us that the group differ, but not
how. Furthermore, you should always be mindful that main effects may
not tell the full story when the interaction is statistically significant. Thus,
the interaction should be the main foci of interpretation when it is
statistically significant. While there are many ways to conduct post-hoc
analyses (e.g., contrast), | would focus on Bonferroni corrected t-test on
the a priori analyses of interest.

Specifically, we would conduct individual analyses of one IV —> DV on
other the various levels of the other V. These are called simple effects.
For example, we could look at the effect of Provider Gender on Satis-
faction separately for female and male patients.

14.3.5 5. Write your results/conclusions

Typically, we would report the following in order:

Main effect 1

Main effect 2

Main effect... n
Interactions
Post-hoc/simple effects

a R wbdh =

Be sure to address your research questions/hypotheses.
Recall our hypotheses:

1. Participants will be more satisfied with visits from female physicians
compared to male physicians.
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Results: The results suggest that our data unlikely given a true null
that satisfaction is equal for both male and female providers, F(1,16) =
6.60, p = .021,72 = .29,95%C1[0.03,1.00]. Thus, our hypothesis were
supported.

2. There will be an interaction between patient and provider gender,
such male patients will rate females physicians higher than male
physicians, but female patients will not have such a pattern.

Results: There will be an interaction between patient and provider
gender, such male patients will rate females physicians higher than male
physicians, but female patients will not have such a pattern.

The interaction between Patient and Provider is statistically significant
and large, F(1,16) = 31.50,p < .001,72 = 0.66,95%C1[0.40, 1.00].

And now, our post-hoc analyses investigating the effect of provider
effect on satisfaction for male and female patients.

14.3.5.1 Male Patients
We can conduct a t-test using only the male data. Please see the t-test
section for details.

Welch Two Sample t-test

data: Satisfaction by Provider
t = 8.687, df = 6.348, p-value = 9.4e-05
alternative hypothesis: true difference in means between group
Female and group Male is not equal to O
95 percent confidence interval:
6.20948 10.99052
sample estimates:
mean in group Female mean in group Male
28.8 20.2

Effect sizes were labelled following Cohen’s (1988) recommendations.

The Welch Two Sample t-test testing the difference of Satisfaction by
Provider (mean in group Female = 28.80, mean in group Male = 20.20)
suggests that the effect is positive, statistically significant, and large
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(difference = 8.60, 95% CI[6.21, 10.99], t(6.35) = 8.69, p <.001; Cohen'’s
d = 6.90, 95% Cl [2.86, 10.88]).

14.3.5.2 Female Patients

Welch Two Sample t-test

data: Satisfaction by Provider
t =-1.725, df = 6.635, p-value = 0.13
alternative hypothesis: true difference in means between group
Female and group Male is not equal to 0
95 percent confidence interval:
-7.63505 1.23505
sample estimates:
mean in group Female mean in group Male
22.0 25.2

Effect sizes were labelled following Cohen'’s (1988) recommendations.

The Welch Two Sample t-test testing the difference of Satisfaction by
Provider (mean in group Female = 22.00, mean in group Male = 25.20)
suggests that the effect is negative, statistically not significant, and large
(difference = —3.20, 95% CI [-7.64, 1.24], 1(6.64) = -1.73, p = 0.130;
Cohen’s d = —=1.34, 95% CI [-2.98, 0.38]).

Please note that these results are automated using an R package and
you must adjust for APA formatting.

14.3.6 Visualizing the ANOVA

Much like the last chapter, we can visualize the ANOVA using box plots.
However, | prefer the following methods:
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We can plot the means and SEs.
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O Think about it

Look at the error bars above, which represent the 95% confidence
intervals of each mean. Which groups would you expect to be statis-
tically significant from one another?

14.4 Conclusion

This chapter covered the factorial ANOVA, a statistical method used
to determine whether there are differences among group means when
there are two or more independent variables (IVs). This analysis expands.
the previous types of ANOVAs we have explored and allows researchers
to study the main effects of each IV and the interaction effect between
them.

14.5 Factorial ANOVA in R

ANOVAs in R are ‘ez’. The ez library allows for easily running various
types of ANOVA, including mixed, factorial, and one way. It also includes
relevant assumption tests.
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library(ez)
ezANOVA(data = dat pp,

dv = Satisfaction,
between = c(Provider, Patient),

wid = ID)

$ANOVA

Effect DFn DFd F p p<.05
ges
1 Provider 1 16 6.597285 2.06161e-02 *
0.2919503
2 Patient 1 16 0.733032 4.04543e-01
0.0438075
3 Provider:Patient 1 16 31.502262 3.89012e-05 i
0.6631739

$ Levene's Test for Homogeneity of Variance®
DFn DFd SSn SSd F p p<.05
1 3 16 12.55 28.4 2.35681 0.110246

14.6 Practice Question

You work with Disney+ and are responsible for researching audience
reception for prospective shows. You are testing the effect of having
various main characters for a new teen cartoon. Specifically, the show
revolves around a superhero and a sidekick. The superhero can be a dog,
cat, or rabbit. The sidekick can be a teen boy or girl.

Based on previous shows, you hypothesize that the cat would be more
popular than the dog and bird as main characters. Furthermore, you
believe a girl sidekick would be more popular than a boy sidekick. How-
ever, you think that differences in animal as a main superhero depend on
the sidekick. Specifically, there will be no difference in animal popularity
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when the sidekick is male, but there cats will be more popular than dogs
or birds when the sidekick is female.

After showing six difference groups (n =5 for each group) a pilot
episode featuring different combination of superheros and sidekicks,
you measure their rating of the show (0-100).

You decide to test the data using a 3 (Cat/Dog/Bird) x 2 (Male/Female
Sidekick) ANOVA. Your data are as follows:

ID Superhero Sidekick Rating

1 Cat Male 52
2 Cat Male 44
3 Cat Male 48
4 Cat Male 48
5 Cat Male 46
6 Dog Male 43
7 Dog Male 49
8 Dog Male 50
9 Dog Male 50
10 Dog Male 48
11 Bird Male 48
12 Bird Male 43
13 Bird Male 44
14 Bird Male 45
15 Bird Male 45
16 Cat Female 69
17 Cat Female 68
18 Cat Female 70
19 Cat Female 73
20 Cat Female 69
21 Dog Female | 54
22 Dog Female | 63
23 Dog Female | 58
24 Dog Female | 59
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ID Superhero Sidekick Rating

25 Dog Female | 59
26 Bird Female 45
27 Bird Female 52
28 Bird Female 47
29 Bird Female 42
30 Bird Female 52

14.7 Answers

The ANOVA (formula: Rating ~ Superhero + Sidekick + Superhero *
Sidekick) suggests that:

e The main effect of Superhero is statistically significant and large (F(2,
24) = 42.87, p < .001; Eta2 (partial) = 0.78, 95% CI1[0.63, 1.00])

e The main effect of Sidekick is statistically significant and large (F(1, 24)
= 115.82, p < .001; Eta2 (partial) = 0.83, 95% CI[0.71, 1.00])

* The interaction between Superhero and Sidekick is statistically signif-
icant and large (F(2, 24) = 26.93, p < .001; Eta2 (partial) = 0.69, 95%
Cl1[0.49, 1.00])

Effect sizes were labelled following Field’s (2013) recommendations.
For female sidekicks:
The ANOVA (formula: Rating ~ Superhero) suggests that:

® The main effect of Superhero is statistically significant and large (F(2,
12) = 55.50, p < .001; Eta2 = 0.90, 95% CI [0.78, 1.00])

Effect sizes were labelled following Field’s (2013) recommendations.
Subsequent ttests:
Cat v Dog

Effect sizes were labelled following Cohen'’s (1988) recommendations.
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The Welch Two Sample t-test testing the difference between
sh_female_cat and sh_female_dog (mean of x = 69.80, mean of y =
58.60) suggests that the effect is positive, statistically significant, and
medium (difference = 11.20, 95% CI [7.19, 15.21], t(6.55) = 6.69, p
< .001; Cohen’s d = 0.55, 95% CI [-0.74, 1.81))

Bird v Dog
Effect sizes were labelled following Cohen’s (1988) recommendations.

The Welch Two Sample t-test testing the difference between
sh_female_bird and sh_female_dog (mean of x = 47.60, mean of y =
58.60) suggests that the effect is negative, statistically significant, and
very small (difference = —=11.00, 95% CI [-16.70, =5.30], t(7.32) = -4.52,
p = 0.002; Cohen’s d = 0.03, 95% CI [-1.21, 1.27])

Cat v Bird
Effect sizes were labelled following Cohen’s (1988) recommendations.

The Welch Two Sample t-test testing the difference between
sh_female_cat and sh_female_bird (mean of x = 69.80, mean of y =
47.60) suggests that the effect is positive, statistically significant, and
small (difference = 22.20, 95% CI[16.83, 27.57], t(5.48) = 10.35, p < .001;
Cohen’s d = 0.27, 95% CI [-0.99, 1.51))

For male sidekicks:
The ANOVA (formula: Rating ~ Superhero) suggests that:

® The main effect of Superhero is statistically not significant and large
(F(2,12) = 1.91, p = 0.190; Eta2 = 0.24, 95% CI[0.00, 1.00])

Effect sizes were labelled following Field’s (2013) recommendations.
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15 Mixed ANOVA

This chapter will cover the mixed ANOVA, a statistical method used
when a study includes both between-subjects and within-subjects fac-
tors. Unlike a one-way or factorial ANOVA, which only involve between-
subjects factors, and unlike a repeated measures ANOVA, which only
involves within-subjects factors, a mixed ANOVA combines the two. This
design is useful when researchers want to examine how one factor varies
across different groups while also considering changes within the same
participants over time or across conditions.

For example, imagine a study on memory performance where re-
searchers compare men and women, and measure their memory scores
at three different time points. Gender is a between-subjects factor (par-
ticipants belong to one group only), while time is a within-subjects factor
(each participant is measured repeatedly). A mixed ANOVA allows us to
test the:

* Main effect of the between-subjects factor (e.g., age group),

e Main effect of the within-subjects factor (e.g., time),

e Interaction effect between the two (e.g., whether changes over time
differ by age group).

15.1 Some Additional Details

A mixed ANOVA is appropriate when there is at least one between-
subjects IV (e.g., group membership) and at least one within-subjects
IV (e.g., repeated measurements). Additionally, it's used when the DV is
continuous (interval or ratio scale). It is most commonly used in longitu-
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dinal studies that compare different groups across multiple time points
or conditions.

Hypotheses in a mixed ANOVA are analogous to those used in either
one-way, repeated, and/or factorial ANOVAs. As an example, consider
a mixed ANOVA with one between-subjects factor and one within-
subjects factor. The mixed ANOVA will have three hypotheses:

1. Main effect of the between-subjects factor
Hop:pigr = taz = - = Pan
Where n is the number of levels in the between-subjects factor A.
2. Main effect of the within-subjects factor
Hop : pip1 = Hpy = - == Upp,
Where m is the number of levels in the within-subjects factor B.
3. Interaction effect

H, 45 : No interaction between A and B

The alternative hypotheses state that at least one main effect or inter-
action exists. If any null hypothesis is rejected, follow-up tests (e.g., post
hoc or simple effects) are needed to locate differences.

15.2 Key Assumptions

A mixed ANOVA requires the following assumptions, which are similar
to those presented in both one-way and repeated measures ANOVAs
(i.e., it combines the assumptions of both):

1. Continuous dependent variable:
The DV should be measured at the interval or ratio level.
2. Independence of observations

Observations for the between-subjects factor must be independent
(e.g., different participants in each group).
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3. Normality of residuals

Residuals should be approximately normally distributed for each combi-
nation of factors. This can be checked with Q-Q plots or tests like
Shapiro-Wilk.

4. Homogeneity of variances

Variances should be roughly equal across groups defined by the be-
tween-subjects factor. Levene'’s test is commonly used.

5. Sphericity (for within-subjects factor)

The variances of the differences between all pairs of repeated measures
should be equal. Mauchly’s test can assess this; if violated, corrections
like Greenhouse-Geisser or Huynh-Feldt are applied.

O Think about it

We will not focus on calculating test statistics by hand in this chapter.
They are slightly more complex than the factorial ANOVA. However,
you should know when to use this design, and how to interpret the
results.

15.3 Our New Drug

We have developed a new anti-depressant drug that we believe will
be exceptionally effective at reducing major depressive symptoms. This
drug has shown promising effects in rats, with rats reported less depres-
sive symptoms (we have a squeak translator) for up to 12-months later.
We decide that measuring depression pre-treatment, post-treatment,
and 12-month followup would be best. However, the main mechanism
by which the drug works is through binding to existing testosterone in
the body. Theoretically, this drug should be more effective for men than
women. We hope to test this through empirical research.
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15.3.1 1. Generating hypotheses

We hypothesize that a main effect and an interaction:
1. There will be main effect of time (a reduction in symptoms)

Null hypothesis:
HO : p‘pre = /’Lpost = :ufollowup
Alternative hypothesis (note: we use a two-tailed, non-directional test):

HO : p‘pre 7& /’Lpost 7& :ufollowup

O Think about it

Note that a change in some value can be depicted as ‘delta’ (A). So
a change in the mean depression score for participants from pre- to
post-treatment can be expressed as:

AM = /j’pre - lu'post

If pre-treatment mean was higher than the post-treatment mean (i.e.,
they went down), then Au should be a positive number. If they got
worse, it should be negative.

2. The new drug will be more effective for men and the old drug will be
equally effective for men and women (an interaction).

Null hypothesis:
HO . Aiu’(newdrug,men) = A/J’(newdrug,women)
Alternative hypothesis:

HA : A:LL(newdrug,men) 7/: A:u(newdrug,wom.en)

15.3.2 2. Designing a study

You and your team plan out a research study. The method follows:
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Power Analysis: A power analysis based on prior literature indicated
that a sample size of 20 participants would achieve a power of

1—8=.80

for detecting medium-sized effects in a 2 (Gender: Men vs. Women) x
2 (Treatment Type: SSRI vs. New Drug) x 3 (Time: Pre-treatment, Post-
treatment [6 months], 12-month follow-up) mixed ANOVA design.

Participants: Participants were recruited from the Corner Brook region
through advertisements posted in local community centers and online
platforms. Recruitment materials were approved by the regional health
authority. Eligible participants were adults (18+) who reported having
been diagnosed with major depressive disorder. A total of 20 partici-
pants (10 men and 10 women) were recruited. Within each gender
group, an equal number of participants were randomly assigned to one
of two treatment conditions (standard SSRI or new testosterone antide-
pressant drug.

Materials: Depressive symptoms were assessed using the Beck Depres-
sion Inventory-Il (BDI-I), a widely used self-report measure of depressive
symptom severity. The BDI-Il consists of 21 items scored on a 0-3 scale,
with higher scores indicating greater depressive symptoms. Total scores
were used as the primary outcome variable. The measure has demon-
strated strong reliability and validity in clinical populations.

Procedure: Participants provided informed consent prior to participa-
tion. Each participant completed the BDI-Il at three time points: 1.
Pre-treatment (baseline), 2. Post-treatment (6 months after treatment
initiation), and 3. 12-month follow-up.

Participants were randomly assigned to one of two treatment conditions
(SSRI vs. new drug) and stratified by gender to ensure equal represen-
tation. Treatment protocols were standardized to ensure consistency.
Participants and research teams members who provided the medications
were both blind to the medication provided. All participants were
informed they would be taking an ‘anti-depressant medication’.
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Thus, the study included two between-subjects factors, one
withinOsubject factor, and a DV:

Between Factors:

1. Gender (Men vs. Women)
2. Treatment Type (SSRI vs. New Drug)

Within factor:

1. Time (Pre-treatment, Post-treatment, 12-month follow-up)
DV:

1. Depressive symptom severity (BDI-Il total score)

Data collection occurred privately, and all responses were anonymized.
The study was reviewed and approved by the Grenfell Campus Ethics
Review Board in collaboration with the regional health authority.

15.3.3 3. Collecting data

The study was completed as described. You obtain the following data:

ID Drug Sex Pre Post Follow
New | Male | 14| 8 18
New | Male | 12| O 7
New | Male | 16| 6 12
New | Male | 16| 8 14
New [ Male | 3 0 5
New | Female | 17 | 17 2
New | Female | 13 | 14 10
New | Female| 14 | 13 8
New | Female| 8 7 3
New | Female | 16 | 19 14
TAU | Male [ 12| 9 12
TAU | Male [ 16| 13 10
TAU | Male [ 16| 11 7
TAU | Male [ 17 | 12 10

rlolol2|ale|e|(N|o|u|r|lw|n|=
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ID Drug Sex Pre Post Follow
15| TAU | Male | 21| 16 17

16| TAU | Female | 17 | 12
17 | TAU | Female | 11 8
18| TAU [Female| 12| 9
19| TAU | Female | 13 | 10
20| TAU |Female| 12| 2

(SN e, 0 MOV R IE_ N N

Thus, we have a 2 (sex) x 2 (pre/post) x 2 (New Drug vs TAU) design, with
two between factors (sex and drug) and one within factor (pre/post).

Recall that data should be in long form; it’s currently in short form. Long
form would like like (note that not all data is presented because the table
is 60 rows long; 20 participants X 3 time points = 60 experimental units):

ID Drug Sex Time BDIScore Depression

1 [ New | Male| Pre 14 14
1 | New | Male [ Post 8 8
1 | New | Male | Follow 18 18
2 | New | Male| Pre 12 12
2 | New [ Male | Post 0 0
2 | New [ Male | Follow 7 7
3 | New | Male| Pre 16 16
3 | New | Male | Post 6 6
3 | New | Male | Follow 12 12
4 | New | Male| Pre 16 16

Our data can be represented graphically as (this is the raw data for visual
inspection and would not be placed in a paper as it potentially identified
individuals; we would present means and Cls/SEs):
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15.3.3.1 Our Model

Our models are getting quite lengthy. Here is the full model for this
study, which builds on the general linear model:

Yi = Bo + Blarug)(T1:) + Bitime) (T2:) + Bisew) (T3:) + Baxe) (T1;)(To;) +
Braxs) (1) (T3:) + Bloxe) (T2:)(T3;:) + Blaxexs) (T1:) (T2) (T3;) + €,

This may look complex, but we have a 8 for each main effect and inter-
action. In total we have three main effects, three 2-way interactions and
one 3-way interaction.
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15.3.4 4. Analyzing data

O Contrasts

We will not explore contrasts explicitly in this class. But they are
imperative to meaningfully conducting your analyses and interpreting
your results. Contrasts are specific comparisons between means that
go beyond the overall F-tests. While the ANOVA tells you whether
there is a statistically significant effect for a factor or interaction, it
doesn’t tell you where the differences are. Contrasts allow you to test
targeted hypotheses. You should be familiar with them for potential
honours projects in the future. For a detailed exploration of contrasts,
go here.

By default, R uses dummy coding. However, dummy coding doesn’t
work well with type Ill sums of squares, which is what we want to
model an interaction. We must use an orthogonal contrast (we will
use effects coding).

15.3.4.1 Assumptions
Sphericity

ezANOVA automatically provides Mauchley’s tests for each repeated
value:

Effect wW P
Time 0.8273]0.2413
Sex:Time 0.8273]0.2413
Drug:Time |0.8273]0.2413
Sex:Drug:Time | 0.8273 | 0.2413

Based on the results of Mauchley’s test, we have not violated this
assumption.

Normality

The rstatix package can easily test normality for call groups of our
analysis:
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https://bookdown.org/pingapang9/linear_models_bookdown/contrasts.html

Drug Sex  Time variable statistic P

New | Female | Follow | BDIScore | 0.9417 | 0.67793
TAU | Female | Follow | BDIScore | 0.9251 | 0.56329
New | Male [Follow |BDIScore| 0.963 |0.82901
TAU | Male [Follow |BDIScore | 0.9274 | 0.57909
New | Female | Post |BDIScore| 0.9517 |0.74938
TAU | Female | Post |BDIScore | 0.8948 | 0.38178
New | Male Post | BDIScore | 0.7817 [ 0.05705
TAU | Male Post | BDIScore | 0.984 |0.95464
New | Female| Pre |BDIScore| 0.914 [0.49192
TAU | Female| Pre |[BDIScore| 0.813 [0.10299
New | Male Pre |BDIScore| 0.79 |0.06698
TAU | Male Pre |BDIScore| 0.94 |[0.66579

We have not violated this assumption.
Homogeneity of Variance
For Sex:
Time df1 df2 statistic P
Follow| 1 | 18 | 0.0083 | 0.9283

Post 1 18 0 1
Pre 1 118 | 0.3276 | 0.5741

For Drug:

Time df1 df2 statistic p

Follow| 1 | 18 | 0.3052 | 0.5874
Post 1 [ 18] 2.555 [0.1274
Pre 1 118 | 0.0304 | 0.8636

Thus, all of our major assumptions are fine, so let's move along.

Note: we could set this up as a multi-level model. Although | recom-
mend this, it is beyond the scope of this class.
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Note that we do our assumptions prior to our main analyses, when
possible. Your results are not interpretable if you have violated the
assumptions in a major way.

To analyze, we can use ezANOVA() from the ez package.

Which gives the following output:

Effect DFn DFd  SSn SSd F P ges
(Intercept) 1 16 |6805.35|586.8|185.558 0 0.9
Sex 1 16 | 22.817 |586.8| 0.622 |0.442|0.029
Drug 1 16 | 2.017 |586.8| 0.055 |0.818|0.003
Time 2 | 32| 313.3 | 166 | 30.198 0 [0.294
Sex:Drug 1 16 [198.017|586.8| 5.399 |0.034|0.208
Sex:Time 2 | 32 |172.633| 166 | 16.639 0 (0.187
Drug:Time 2 | 32 | 33.633 | 166 | 3.242 |0.052|0.043
Sex:Drug:Time| 2 | 32 | 76.433 | 166 | 7.367 |0.002|0.092

15.3.4.2 Main Effects

15.3.4.2.1 Hypothesis 1 - Symptoms will decrease over time**
We will explore all main effects for the purposes of learning, but note that
we are interested particularly in the main effect of time (see hypotheses).

Before looking at the main effects, it's important to understand that main
effects, significant or not, have little interpretation value when interac-
tions are present. Thus, while we can report these, please do not put to
much weight into them.

Sex

Based on our output above, we know there was no effect of sex on
response to the drug, F(1,16) = 0.622, p = 0.442, n2 = 0.029. If we ig-
nored all other variables in the model and looked only at the differences
between men and women, there would not be an effect.

Drug

Furthermore, there seem to be no main effect of drug, F(1,16) = 0.055,
p = 0.818, 173 = 0.003. If we ignored sex and time, all other variables in
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the model and looked only at the differences between TAU and the new
drug, there would not be an effect.

Time

There was a statistically significant main effect of time, F'(2,32) = 30.20,
p < .001, n2 = 0.294. If we ignored sex and drug time, depression scores
would vary across time.

Let's look at these difference in more detail. This first figure focuses on
the changes over time:

22

18

16

14 [ ] ;
s Time
9 12 B rolow
Q10
[} Post
[0}
o 8 ® Pre

6 .....

4

2 .....

0

Pre Post Follow
Time

You may notice that there seems to be a downward trend, such that
depression scores go down from pre, to post, to followup. We can com-
plete post-hoc analyses by running a Tukey’s test for the within-subject
variable:

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = Depression ~ Time, data = data long)

$Time

diff lwr upr p adj
Post-Follow 1.25 -2.32548 4.82548 0.679101
Pre-Follow 5.35 1.77452 8.92548 0.001899
Pre-Post 4.10 0.52452 7.67548 0.020903

258



Please see the repeated measures ANOVA section of this companion
for additional details on reported this output. However, there is a statis-
tically significant reduction in depressive symptoms from the Pre to Post
periods, and the Pre to Follow-up periods. However, Post and Follow-
Up did not differ.

NOTE: this effect is qualified by significant interactions, which requires
additional in-depth exploration.

15.3.4.3 Two-Way Interactions

15.3.4.3.1 Hypothesis 2 - New drug more effective for men**
Sex x Drug

The output suggests a significant two-way interaction between sex and

drug, F(1,16) = 5.399, p = .034, 7% = .208.

We can investigate this like we did a factorial ANOVA. Our output is as
follows:

Drug Y. group1 group2 n1 n2 P
New | Depression [ Female | Male |15]|15| 0.241
TAU | Depression | Female | Male [15]15[0.00396

The above uses a Bonferroni adjust p-values. The results suggest that
males and females did not differ in response to the new drug, p = .241.
However, females did respond more favorably to the treatment as usual,
p = .004. Please see the factorial ANOVA chapter for more details on
conducting and writing up a two-way interaction.

Drug x Time

There was no statistically significant drug x time interaction, F(2,32) =
3.24, p = .052, n? = .043.

Sex x Time

The output suggests a significant two-way interaction between sex and
time, F(2,32) = 7.37, p = .002, 173 = .092. We will explore this in detail;
note that this is exploratory analyses versus planned analyses.
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We can investigate this like we did a factorial ANOVA. Our output is as
follows:

Time Y. group1 group2 n1 n2 p

Follow | Depression | Female | Male [10(10]0.009
Post | Depression [ Female| Male [10]10]0.237
Pre |Depression|Female| Male |10|10(0.574

The above uses a Bonferroni adjust p-values. The results suggest that
males and females did not differ in response during the ‘Pre’ stage, p =
574 nor the ‘Post’ stage, p = .237. However, females did respond move
favorably during the ‘Follow-up’ stage of treatment, p = .009. Please see
the factorial ANOVA chapter for more details on conducting and writing
up a two-way interaction.

15.3.4.4 Three-Way Interaction

The three-way interaction will help clarify the complete picture of the
results. Remember, main effects are largely uninterpretable the context
of interactions. Well, higher-order interactions may better explain a
lower-order interaction. Remember, we had main effects of Time, but
males and females only differed in the Follow-up (two-way interaction
above).

The following figure will make a reappearance.

Female Female
New TAU
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15
© 10
8 5
n O
5 Male Male
?
3 New TAU
a 20
o 15
0O 10
5
0
Follow Post Pre Follow Post Pre
Time
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In essence, we will be asking if any differences in depression scores for
Sex x Time depend on the drug. Or, similarly, if any differences in Drug
x Sex depend on time.

Sex x Time for New Drug

Effect DFn DFd F P ges
Sex 1 8 | 0.829 |10.389|0.076
Time 2 16 | 6.447 |0.009]0.144
Sex:Time | 2 16 116.556| 0 [0.302

So, for the new drug, we have a sex by drug interaction. Let's tease this
apart with post-hoc pairwise comparisons.

Time Y. group1 group2 n1 n2 P

Follow | Depression | Female | Male [ 5 [ 5 [ 0.275
Post |Depression|Female| Male | 5| 5 [0.00818
Pre |Depression|Female| Male | 5| 5| 0.64

Thus, it seems that males and females only differed at the post time for
the new drug, with females having higher depression scores. Note that
you will need to write up each in proper t-test style.

Let's determine if the changes over time differed for males and females.

statistic df p

group1 group2 n1 n2

Female | Depression | Follow | Post | 5 | 5 |-3.1252| 4 |0.035
Female | Depression | Follow | Pre 55| -2.683 | 4(0.055
Female | Depression | Post Pre 5[5 ] 05345 | 4 |0.621
Male |Depression | Follow | Post | 5| 5| 7.9048 | 4 | 0.001
Male | Depression | Follow | Pre 5|5 (-05774| 4 [0.595
Male |Depression| Post Pre 5[5 ]1-4.9934( 4 |0.008

Thus, females had no statistically significant changes in depressive symp-
toms across any time points. However, males had a significant reduction
in symptoms from pre to post, but an increase from post to follow.

Sex x Time for TAU
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Effect DFn DFd F P ges
Sex 1 8 | 8.366 | 0.02 |0.441
Time 2 16 [37.043| O ]0.534
Sex:Time | 2 16 | 2.995 |10.079(0.085

So, for TAU, we have a main effect of sex and time, but no interaction.
We can conduct post hoc tests to determine the nature of these main
effects.

Y. group1 group2 n1 n2 P
Depression | Female | Male |15]15]0.003%96

Thus, the means of males (Z = 13.30) was higher than females (z = 8.40).

For the main effect of time, we can conduct post-hoc analyses.

Y. group1 group2 n1 n2 statistic df P p.ad;
Depressior} Follow | Post |10[10( -2.487 | 9 | 0.035 0.104
Depressior} Follow [ Pre |10[10( -7.144 | 9 |0.000054 |0.000162
Depressior] Post Pre |10]|10[ -6.548 [ 9 |0.000105|0.000315

We can see that depressive score were lower for the Pre time when
compared to the Post and Follow-up time. However, the Post and
Follow-up up times were not statistically significant when accounting for
the Bonferroni correction.

We now have enough information to answer our initial hypotheses.

15.3.5 5. Write your results/conclusions

All tests are tests are reported as significant at p < .05; Bonferroni cor-
rections were used for multiple comparisons.

We first hypothesized a main effect of Time on depressive symptoms,
such that depressive symptoms would decrease over time. Indeed,
the main effect of time was statistically significant, F(2,32) = 30.20,p <
001,72 = .294. Specifically, depressive symptoms were lower at the Pre
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time (x = 13.8,SD = 3.83) when compared to the Post (z =9.7,SD =
5.18,p = .021) and Follow-up (Z = 8.45,SD = 4.97, p = .002) times.

Second, we hypothesized that the new drug would be more effective for
men in long term, while the old drug would not vary over time between
men and women. For the new drug, while there was a significant main
effect for time, F(2,16) = 6.45,p = .009,72 = .144, females had no sta-
tistically significant changes in depressive symptoms across time point,
while males experiences a significant decrease in symptoms from Pre to
Post and Increase from Post to Follow-up. The Pre and Follow-up scores
did not differ for males. males experience lower depressive symptoms
when compared to women at the Post time, while other differences
existed.

For TAU, there was a main effect of sex, F(1,8) =8.37,p = .020,773 =
440, with females (Z = 8.40) having significantly lower depressive symp-
toms than males (z = 13.30). There was a main effect of time on depres-
sive symptoms, F(2,16) = 37.04,p < .001,72 = .534. Here, individuals
experiences a reduction in symptoms from the Pre time (Z = 14.79) to
the Post time (T = 10.20) and Follow-up time (z = 7.60). The Post and
Follow-up times did not differ.

Thus, while depressive symptoms did decrease, there were some sex and
drug differences. Overall, the TAU works equally for men and woman at
decreasing symptoms, with most notable benefits from Pre to Post time.
There were no addition benefits or downsides to depressive symptoms
at follow-up.

However, the new drug seems to have no benefit for reducing depressive
symptoms in females. However, for males, it appears to have a significant
impact of reducing depressive symptoms in the short term (Pre to Post),
but that symptoms increase again in the long-term (from Post to Follow-

up).
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15.4 Conclusion

Mixed ANOVAs combine both independent and repeated designs,
allowing research to model the complexity of psychology phenomenon
that change over time and context. While it may feel intimidating, your
knowledge of previous designs will help you conduct this analysis.
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16 ANCOVA

Analysis of Covariance (ANCOVA) focuses on accounting for variance
explained by a continuous variable that may not be the manipulated or
pseudo-manipulate variable of interest. Thus, we expend our ANOVA
to account for another variable. Typically, we call this other variable a
covariate.

Simply, we include a covariate in model predicting the DV, without the
IV. Then, we add the IV to determine if it has an effect above and beyond
the covariate. Furthermore, adding a covariate can help reduce the error
variance (i.e., it explains what would otherwise be unexplained error
variance). Last, adding a covariate can reduce the impact of confounds
on the DV by including them as covariates.

16.1 Our Model

An ANCOVA is essentially a model with a continuous covariate and a
dummy coded IV.

y, = (model) + e,
Y; = by + by (wq;) + by(z9;) +€;

Where b, is the regression coefficient for the covariate, z,, is individual
i's score on the covariate, b, is the coefficient for the dummy coded IV,
x4, is individual i's score on the IV (0 or 1), and e, is the error.

Note that there will be more dummy coefficients for more levels of the
IV (number of dummy coded variables = levels - 1). For example, if we
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were conducting a study with one covariate and an IV with three levels
(low, medium, and high), our resulting model would be:

Y; = bO + bl (xcovariate) + b2 (xmedium) + b3 (xhigh)

16.2 Our Assumptions

ANCOVA has two assumptions that we have not encountered.

1. Independence between the covariate and the IV: When the IV and
the covariate are related/dependent, it makes the interpretation of the
model difficult. Furthermore, it can result in inflated estimates of the
effects. This is analogous to multicollinearity, which will be discussed in
multiple regression.

We can test this by running an ANOVA using the IV as the IV and the
covariate as the DV. Think about what this would tell us.

@ Think about it

If the ANOVA model, when covariate ~ IV is statistically significant, it
would indicate the the covariate differs between IV levels to a degree
that is unlikely under a true null hypothesis (i.e., that the covariate is
equal between levels of the IVs). Thus, the covariate and the IV are
not independent.

We want a non-statistically significant result for this test.

2. Homogeneity of Regression Slopes: We want the relationship
between the covariate and the DV to be the same across all levels of
the IV. For example, imagine an ANCOVA investigating the effect of
university major (IV) on GPA (DV), but using intelligence as a covariate.
We would want the association between intelligence and GPA to be the
same across majors. Said another way, we would likely expect a positive
association between intelligence and GPA, and want these to be the
same across disciplines. This is represented in the following figure:
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Notice how the line of best fit for each major is similar.

We can test this assumption by modelling an interaction. A significant
interaction would indicate that the slopes vary based on levels of the IV
and that we have violated this assumption.

3. Homogeneity of Variance: This is the same as one-way ANOVA and,
thus, we can use Levene's test.

16.3 Family dietary changes

You are hired by an organization seeking to promote healthy families
in the community. They are implementing a course for families around
healthy nutrition and balanced diets. They are interested in the impact of
participating in a full version of this course, a brief version, and no treat-
ment (three-level IV) on eating habits (DV). Specifically, we will measure
eating habits as the total number of servings of fruits/vegetables per
family over a one week period, divided by the number of people in that
family. Thus, a DV score of 12 would indicate that the family ate total
12 servings of fruits or vegetables per person over the week following
their intervention. They ask you to conduct the analyses. Importantly,
you know that income is a strong predictor of eating habits, because
healthy foods are typically more expensive. Thus, you treat income as a
covariate (family income/year).
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© Practice Question

1. What are the IV, DV, and covariate?

2. What could be another covariate?

3. What is the model (i.e., write out the regression equation)?

O Answers

1. IV: eating intervention. Three levels (full, brief, none). DV: average
fruit and vegetables intake per person in a family over one week.
Covariate: income.

2. Many possibilities.
3.

yfruitvegetable,i = bO + bz (xincome,i) + 62 (xfull,i) + b3 (xbrief,i) + €;

16.4 Power Analysis

You review the literature and determine find a nice meta-analysis on
eating habit interventions. This study suggests that a brief intervention
was able to effectively reduce junk food consumption and resulted in a
effect size if n? = .54, 95%C1[.35, .62]. Bring brilliant, you use the lower
bound estimate. Your power analysis suggests:

Balanced one-way analysis of variance power calculation

k =3
n = 7.06532
f = 0.733799
sig.level = 0.05
power = 0.8
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NOTE: n is number in each group

Thus, we need eight families per group (n = 7.06, rounded up). You
successfully recruit 24 families. You obtain the following data:

Family Intervention FV Income

Full 18| 57200
Full 151 57900
Full 21| 62100
Full 21| 55200
Full 22 | 50700
Full 171 62900
Full 171 60500
Full 22 | 51500

Brief 14| 50500
Brief 13| 59500
Brief 13| 44200
Brief 17 | 61900
Brief 13| 47400
Brief 9 | 55500
Brief 19| 50500
Brief 151 57800
None 9 | 52100
None 8 | 48100
None 12| 57200

SHNHEHENEHEREERRGEENE

20 None 11| 46000
21 None 13| 65300
22 None 8 | 49400
23 None 15| 50400
24 None 14 | 50000

Which gives us the following descriptive statistics:
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Descriptive statistics for FV as a function of Intervention.

Intervention M M 95% CI  SD
Brief 14.12 [11.62, 16.63] 3.00

Full 19.12 [16.87, 21.38] 2.70

None 11.25 [8.98, 13.52] 2.71

Note. M and SD represent mean and standard deviation,
respectively.

LL and UL indicate the lower and upper limits of the 95%
confidence interval

for the mean, respectively.

The confidence interval is a plausible range of population
means that could

have caused a sample mean (Cumming, 2014).

20

Intervention

16 ' Brief
BE Ful
' None

Fruit and Vegetable Intake

Brief Full None
Intervention

16.5 1. Generating hypotheses

Our hypothesis will be analogous to one-way ANOVA.
HO * Hnone = :U‘brief = :uf'u,ll

or
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H, : all pequal
and:

H , = at least one p different

16.6 4. Analyzing data

16.6.1 Assumptions

First, let's check our assumptions.

1. Independence of IV and covariate: For this, we would run a one-way
ANOVA using our IV as our IV and our covariate as the DV.

ANOVA results using Income as the dependent variable

Predictor SS df MS F p
partial eta2
(Intercept) 22823161250.00 1 22823161250.00

699.71 .000
Intervention 107507500.00 2 53753750.00
1.65 .216 .14

Error 684977500.00 21
32617976.19
CI 95 partial eta2

[.00, .36]

Note: Values in square brackets indicate the bounds of the 95%
confidence interval for partial eta-squared

Thus, we have not violated the assumptions. The income level did not
differ based on treatment groups, F(2,21) = 1.65, p = 0.216; n? = 0.14,
95%C1[0.00, 0.31].

271



2. Homogeneity of Regression Slopes: \We want to test a model includ-
ing both covariate, DV, and their interaction. We will interpret our main
analyses later, but for now, focus on the interaction term in a full ANOVA
model. We will specify an interaction by simply multiplying the DV and
covariate in a model (in addition to our regular model). We must specify
a type 3 sums of squares. We will the the apa.aov.table() function from
the apaTables package:

ANOVA results using FV as the dependent variable

Predictor SS df MS F p partial eta2
(Intercept) 12.11 1 12.11 1.55 .230
Intervention 39.10 2 19.55 2.50 .110 .22
Income 0.72 1 0.72 0.09 .765 .01
Intervention x Income 24.34 2 12.17 1.55 .238 .15

Error 140.91 18 7.83
CI 95 partial eta2

[.00, .45]
[.00, .19]
[.00, .38]

Note: Values in square brackets indicate the bounds of the 95%
confidence interval for partial eta-squared

We want to focus on the interaction term. Here the interaction (Inter-
vention x Income) is not statistically significant. This indicates that the
relationship between income and FV consumed does not depend on
intervention type. We have not violated the assumption.

3. Homogeneity of Variance: Here we use Levene's test.
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 2 0.054 0.947
21
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We conducted Levene's test to asses the homogeneity of variances and
the results suggest that we did not violate this assumption, F'(2,21) =
054, p = .9472.

We then conduct our main analysis, using our IV, DV, and covariate. Most
statistical software programs allow you to readily specify these variables.
Here are our results:

$ANOVA

Effect DFn DFd SSn SSd F p
p<.05 ges
1 Intervention 2 21 191.211 194.307 10.3327 0.000751026
* 0.495985

$ Levene's Test for Homogeneity of Variance®
DFn DFd SSn Ssd F p p<.05
1 2 21 3.99751 68.0933 0.616416 0.54936

16.6.2 Effect Size

Although many statistical software programs will calculate our effect size
for us, you should know what it means. We can calculate 7712) (partial eta
squared). nf, can be calculated as:

2 _ SSeffect
" =S8, pem + S

error/residual
For our intervention:

220.27

= = .571
220.27 + 165.25

;

This represent a ratio of what is explained by the IV compared to the
residual error.

16.6.3 Post-Hoc Tests

Much like a one-way ANOVA, we will need to conduct post-hoc tests.
However, we will need to adjust the groups to account for any differences
in covariates; remember, we want to control for these differences in the
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DV, which is why we are doing this in th first place. We can still use Tukey's
HSD and get a comparison of each group.

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = FV ~ Income + Intervention, data = dat nutr)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t])

Full - Brief == 0 5.00 1.50 3.34 0.0087 **

None - Brief == 0 -2.87 1.44 -1.99 0.1398

None - Full == -7.87 1.54 -5.12 <0.001 ***
Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- single-step method)

And the associated confidence intervals:

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = FV ~ Income + Intervention, data = dat nutr)

Quantile = 2.53
95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr
Full - Brief == 0 4.998 1.208 8.787
None - Brief == 0 -2.874 -6.524 0.775
None - Full == -7.872 -11.759 -3.985
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It is also important to get effect size estimates for each comparison. But
remember, we want to adjust the means using the covariate (i.e., account
for their different scores on the covariate). We will also need the adjusted
means and standard deviations.

16.6.3.1 Adjusted Means

Intervention effect
Intervention

Brief Full None
14.1255 19.1232 11.2512

Lower 95 Percent Confidence Limits
Intervention
Brief Full None
11.99536 16.89994 9.08174

Upper 95 Percent Confidence Limits
Intervention

Brief Full None
16.2557 21.3465 13.4207

We will also need adjusted standard deviations. We have standard errors:

[1] 1.02120 1.06584 1.04003

Note: the order aligns with the previous adjusted means (Brief, Full,

None). You may recall from an earlier chapter that Tt - Thus, we can
N

estimate:
s=o0zVN

We have eight per group, thus the following will return the adjusted SD
for each group:

[1] 2.88840 3.01465 2.94165
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Again, the order aligns with the output from the adjusted means (Brief,
Full, None). The mes() function can then calculate each standardized
difference (Cohen'’s d) for each group difference.

Mean Differences ES:

d [ 95 %CI] = -1.69 [ -2.83 , -0.55 ]
var(d) = 0.34

p- value(d) = 0.01

U3(d) = 4.52 %

CLES(d) = 11 56 %

Cliff's Delta —0.77

g [ 95 %CI] -1.6 [ -2.68 , -0.52 ]
var(g) = 0.
p-value(qg) 0.01
U3(g) = 5.47 %

CLES(g) = 12.89 %

N w 1

Correlation ES:

r [ 95 %CI] -0.67 [ -0.88 , -0.26 ]

var(r) = 0.02

p-value(r) = 0.01

z [ 95 %CI] = -0.81 [ -1.36 , -0.27 ]
var(z) = 0. 08

p-value(z) = 01

0dds Ratio ES:

OR [ 95 %CI] =
p-value(OR)

|
(<]

.05 [ 0.01 , 0.37 ]
.01

]
(o]

Log OR [ 95 %(CI]
var(l0R) = 1.12
p-value(Log OR)

-3.07 [ -5.14 , -1 ]

0.01

Other:
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NNT = -5.14
Total N = 16

Mean Differences ES:

d [ 95 %CI] = 0.99 [ -0.
var(d) = 0.28
p-value(d) = 0.08

U3(d) = 83.79 %
CLES(d) = 75.72

Cliff's Delta 0.51

g [ 95 %CI] =0.93 [ -0
var(g) = 0.25
p-value(g) = 0.08
U3(g) = 82.44 %

CLES(g) = 74.51 %

Correlation ES:

r [ 95 %CI] = 0.47 [ -0.
var(r) = 0.04
p-value(r) = 0.09

z [ 95 %CI] = 0.51 [ -O.
var(z) = 0.08
p-value(z) = 0.09

0dds Ratio ES:

OR [ 95 %CI] = 5.98 [ 0.
p-value(OR) = 0.08

Log OR [ 95 %CI] = 1.79

var(lOR) = 0.92
p-value(Log OR)

Other:

NNT

= 2.8
Total N =

16

%

0.08

05

.05

04

04

91

2.02 ]

1.91 ]

0.78 1]

1.05 ]

39.28 1

.09 ,
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Mean Differences ES:

d [ 95 %CI] =2.64 [ 1.3, 3.98 ]
var(d) = 0. 47
p-value(d) =
u3(d) = 99.59 %
CLES(d) = 96.92 %
Cliff's Delta = 0.94
g [ 95 %CI] =2.5 [ 1.23 , 3.77 ]
var(g) = 0. 42
p- value(g) =
U3(g) = 38 %

CLES(g) = 96.14 %
Correlation ES:
r [ 95 %CI]

var(r) = 0.
p-value(r)

82 [ 0.54 , 0.93 ]
l
0

N o I

z [ 95 %CI]
var(z) = 0.
p-value(z)

5[0.6, 1.69 ]
8

Il OII

0dds Ratio ES:

OR [ 95 %CI]
p-value(OR)

120.78 [ 10.6 , 1375.76 ]

Il
(o)

Log OR [ 95 %CI]
var(lOR) = 1.54
p-value(Log OR) = 0

4.79 [ 2.36 , 7.23 ]

Other:

NNT = 1.31
Total N = 16
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16.7 5. Write your results/conclusions

We investigated the impact of a healthy eating intervention on the
average number of fruits and vegetables consumed per person, per
family over the course of one week. Additionally, we controlled for family
income. We hypothesized that intervention would impact the amount
of F&V consumed and explored potential differences using post-hoc
comparisons. We tested several assumptions to determine the suitability
of ANCOVA to test our hypothesis.

The assumption of independence of intervention and our covariate,
income was held. The income level did not differ based on treatment
groups, F(2,21) = 1.65, p = 0.216; > = 0.14, 95%C11[0.00,0.31]. Second,
we conducted Levene's test to assess the homogeneity of variances
of treatment groups; the results suggest that we did not violate this
assumption, F(2,21) = .054, p = .9472. Last, we did not violate the ho-
mogeneity of regression slope assumption, F'(2,18) = 1.55, p = .238.

We conducted an ANCOVA to determine the impact of intervention on
consumption of fruits and vegetables, using family income as a covariate.
The covariate, income, was not related to the consumption of fruits
or vegetables, F(1,20) = 0.00, p = .996, 7712, = 0. However, the results
suggest the amount of fruit and vegetables consumed did vary by treat-
ment type to a proportion that is unlikely given a true null hypothesis
F(2,20) = 110.14, p < .001, nZ = .57, 95%C1[.26, .69].

16.7.1 Post-hoc test

We conducted post-hoc tests using Tukey's LSD to determine which
interventions differed. We had no a priori hypothesis; thus, we analyses
were purely exploratory. First, our results suggest that families in the Full
intervention (M = 19.12) consumed statistically significant more fruits
and vegetables compared to the Brief intervention (M = 14.13), differ-
ence = 4.99, d = 1.69, 95%C1 = [0.55,2.83], p = .001.

Second, our results suggest that families in the Full intervention (M =
19.12) consumed statistically significant more fruits and vegetables com-
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pared to no intervention (M = 11.25121), difference = 7.87, d = 2.64,
95%C1T = [1.30,3.98], p < .001.

16.8 Conclusion

THE ANCOVA is a powerful analysis that allows researchers to account
for covariate, a variable they believe to be related to the DV, in the
analysis. This allows them to parse out the unique variance in the DV
explained by the IV, which can demonstrate the importance of a hypoth-
esized variable of interest.

16.9 ANCOVA in R

16.9.1 ezANOVA()

We can use a number of functions to calculate the ANCOVA; however,
the ezANOVA() function from the ez package is, not to sound lame, ez.
We will need to specify the type of sum of squares; we will use type 2
because we don't care about an interaction. Note that this function will
run Levene’s test on the adjusted data.

$ANOVA

Effect DFn DFd SSn SSd F p
p<.05 ges
1 Intervention 2 21 191.211 194.307 10.3327 0.000751026
* 0.495985

$ Levene's Test for Homogeneity of Variance®

DFn DFd SSn ssd F p p<.05
1 2 21 3.99751 68.0933 0.616416 0.54936
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16.9.2 aov()

We could use the default aov() to conduct our analyses. The lovely
apa.aov.table() function let's us specify the types of sums of squares.
We will use the apa.aov.table() output for our class.

ANOVA results using FV as the dependent variable

Predictor SS df MS F p partial eta2
CI 90 partial eta2
Income 0.00 1 0.00

0.00 .996 .00
Intervention 220.27 2 110.14 13.33 .000 .57
[.26, .69]

Error 165.25 20
8.26

Note: Values in square brackets indicate the bounds of the 90%
confidence interval for partial eta-squared

Thus, it seems the covariate, income, is not linked to the amount of FV
consumed. However, there is a main effect of intervention on number of
F&V consumed. Third, our results suggest that families in the Full inter-
vention (M = 11.25121) consumed statistically significant more fruits and
vegetables compared to the Brief intervention (M = 14.13), difference =
2.87, d = 0.99, 95%CI = [—0.05,2.02], p = .139.
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17 Correlation

Correlation is a statistical technique used to measure the strength and
direction of the relationship between two continuous variables. Unlike
ANOVA, which compares group means, correlation focuses on whether
changes in one variable are associated with changes in another. Impor-
tantly, for this courser, a correlation involves two continuous variables.

The most common measure is Pearson’s correlation coefficient (r), which
ranges from -1 to +1: - r = +1: Perfect positive relationship (as one
variable increases, the other increases). - r = —1: Perfect negative rela-
tionship (as one variable increases, the other decreases). - » = 0: No
linear relationship.

17.1 Some Additional Details

Correlation describes two key aspects of the relationship between vari-
ables:

1. Direction

Direction involves that nature of the relationship between the variables.
A positive correlation indicates that as one variable increases, the other
alsoincreases (e.g., hours studied and exam scores). Positive correlations
are above 0 (r > 0); however, rarely is the “+"” placed in from of the
correlation. Thus, assume that a correlation with no symbol means it is
positive. A negative correlation indicates that as one variable increases,
the other decreases (e.g., stress level and sleep duration). A negative
correlation is between —1 and 0. There will be a “-” symbol in front of a
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negative correlation. A correlation of zero (0) indicates that there is no
linear relationship between the variables.

2. Strength The strength of a correlation is indicated by the absolute
value of r. That means you can ignore whether it is positive of negative.
For example, a correlation of r = .3 and r = —.3 have the same strength/
magnitude, but different directions. There are some typical cut-offs to
apply a qualitative descriptor to correlations. For example, Cohen (2013,
p. 116) described:

e Weak: |r| ~ 0.10 — 0.29
* Moderate: |r| ~ 0.30 — 0.49
e Strong: |r| > 0.50

The closer |r| is to 1, the stronger the linear relationship. However, corre-
lation does not imply causation; two variables may be related without
one causing/influencing the other.

17.2 Key Assumptions

When using Pearson'’s correlation, the following assumptions should be
met:

1. Continuous Variables: Both variables should be measured at the
interval or ratio level.

2. Linearity: The relationship between the two variables should be
approximately linear. This can be checked visually using a scatterplot.

3. Normality: Both variables should be approximately normally distrib-
uted, especially for significance testing. This can be assessed with
histograms, Q-Q plots, or tests like Shapiro-Wilks.

4. Homoscedasticity: The variability of one variable should be similar
across all values of the other variable. This can be checked visually in a
scatterplot.

5. Independence of Observations: Each observation should be inde-
pendent of the others.

283



17.3 Do Looks Matter?

You are hired by Instagram to research their trending posts. They ask
if people like more posts based on the poster’s attractiveness. You
decide that you will collect posts and determine if there is a relationship
between the number of likes a posts receives and how attractive the
poster is rated.

17.3.1 1. Generating hypotheses

We hypothesize that there is a relationship between attractiveness and
likes of a post. We will use a two-tailed test (i.e., not specify a direction).
Thus, our hypotheses are as follows under NHST. Note: p (‘row’) is the
population correlation.

HO : patt'r‘,likzes =0

HA : pattr,likes 7& 0

17.3.2 2. Designing a study

Power Analysis: You review the literature and determine that the there
is a strong link between attractiveness and popularity. You determine
the best estimate to of a population parameter to be p = .75. You power
analysis (see chapter related to power) results in:

approximate correlation power calculation (arctangh
transformation)

n =10.725
r=20.75
sig.level = 0.05
power = 0.8
alternative = two.sided

Thus, you require 11 posts.
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Materials: The study used Instagram profile photos from 11 randomly
selected accounts. Photos had to contain a full face and body view of
the user. For each photo, the number of likes on the Instagram post
(continuous variable) was collected. Next, four anonymous individuals
rated the profile photos’ attractiveness on a 10-point Likert scale (1 =
very unattractive, 10 = very attractive). The attractiveness ratings were
averaged across raters to create a single attractiveness score per photo.

Procedure: Raters were were shown a series of Instagram photos in
randomized order and asked to rate each photo’s attractiveness using
the 10-point scale. The number of likes for each photo was recorded
directly from Instagram at the time of data collection.

The primary analysis examined the correlation between Instagram likes
and attractiveness ratings. All data were anonymized, and no identifying
information was shared. The study was reviewed and approved by the
Grenfell Campus Ethics Review Board.

17.3.3 3. Collecting data

The study was completed as described. You obtain the following data:

Likes Attractiveness

22272 8
47387
65
417
99
143
41123
108
28183
330
21268

N
o

N|m|w|lo|joojnn|jw|h~|W

Which we can plot as a scatterplot:
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17.3.4 4. Analyzing data

We typically estimate the associations with variables using covariances
and correlations. Prior to looking at correlations, let’s review covariance.
The covariance measures the cross-product (multiplication of two vari-
ables) of deviations from the respective variables’ means to determine
their average deviations. Consider the mean for likes 1.467227 {4} and
attractiveness 5.181818. We would calculate how much each variables
deviates from the mean, multiple each, then average them.

_ 2@ -7y Y

COU(

Where 7 is an individual. For out data, we need to calculate the deviation
from likes and attractiveness:

Likes Attractiveness Deviation from Like Deviation from

Attractiveness
22272 8 7600 2.8182
47387 10 32715 4.8182
65 3 -14607 -2.1818
417 4 —-14255 -1.1818
99 3 -14573 -2.1818
143 5 -14529 -0.1818

286



Likes Attractiveness Deviation from Like

Deviation from

Attractiveness

41123 8 26451 2.8182
108 5 —14564 -0.1818
28183 3 13511 -2.1818
330 1 —-14342 -4.1818
21268 7 6596 1.8182

To calculate the sum of the products (numerator of covariance), we would
multiple the third and fourth column for each row and add them up. This
is known as the sum of the products (SP):

SP =) (z,—Z) x (y, — 1)
For our data:

SP = (7599.727)(2.8181818) + (32714.727)(4.8181818) + ...

= 381880.5
We then divide by n — 1

381880.5
: . = - = 1 .
COU(lzkes,attractwess) 11 —1 38188.05

Much like a correlation, a positive covariance indicates that the variables
tend to associate in the same direction. So here, posts with more likes
tend to be rated as more attractiveness. A negative covariance would
indicate the opposite: higher scores on one variable are associated with
lower scores on others.

A major issue with covariance is that it is not standardized. That is, it is
difficult to compare covariances with one another, making them difficult
to interpret. One cannot readily interpret a covariance of 10, 100, 1000,
or 10000, because they depend on the original metric of the variables
used to calculate it. For example, imagine that | wanted to calculate the
covariance of height and weight (kg). | could use ¢m or m as a metric
of height. When | use height in ¢m | get a covariance of 189.44. When |
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use heightin m, | get 1.89. This is despite the strength of the association
being identical. How might we resolve this?

17.3.4.1 Correlation Coefficient

The correlation coefficient is a standardized covariance. What does
standardization do? It converts a variable into a standard unit that facil-
itates comparisons. We can scale our variables considering the standard
deviations. Specifically, we would adjust our formula to be:

covy,

5,8

r =
Yy

Which, using some maths, can be re-written as:

SP
(85,)(SS,)

r =

Where SS, is the sum of squared deviations of x and SS, is the sum
of squared deviations of y. Thus, using our data above, we need the
standard deviation of Likes (18197.74) and Attractiveness (2.75). Using
covariance and standard deviations:

38188.05
" (18197.74)(2.75)

Or, if we used sum of squared deviations (the second way to calculate it;
see above):

381880.5 _ 3818805 _ .,
\/(3311577666)(75.63636)  500475.5

Recall that correlations range from —1 to 1. A correlation of —1 indicates
a perfect negative relationship. A correlation of 1 indicates a perfect
positive relationship. A correlation of 0 indicates no relationship. Thus,
correlation helps us understand the direction (+, -) and magnitude (ab-
solute size of the number) of a relationship. For example, r = .4 indicates
a positive relationship, but r = —.6 indicates a stronger relationship that
is negative.
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For our research, seems that Likes and Attractiveness have a strong
positive relationship. However, you know that we must determine if this
data is unlikely given a true null hypothesis.

Distribution of the r test statistic

Correlations have a distribution that is related to the t distribution.
Simply, r can be converted to a t statistic:

T (n—2)
TV

We could then use a t-distribution to determine the likelihood of our or
more extreme data given a true null. For our example:

,_ -T630VIT 2
V1 — 76302

Much like the t-distribution, the r-distribution has n —2 degrees of
freedom. For our study this means that:

= 3.541699

df =n—2=11-2=9

Looking up the in our t-distribution table, we get a p-value of .00629.
Therefore, our probability of getting this large or larger of a correlation
under a true null is 0.006.

Inr, the output we get is (my data is called dat and the variables are Likes
and Attractiveness:

Pearson's product-moment correlation

data: dat$Likes and dat$Attractiveness
t = 3.542, df = 9, p-value = 0.0063
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.300882 0.934957
sample estimates:
cor
0.763035
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Most researcher will present a correlation matrix for all continuous vari-
ables used in their study, regardless of whether their main analyses was a
correlation. This provides a nice summary of the means, SDs, and corre-
lations between all variables. The following is an example of a correlation
matrix.

Means, standard deviations, and correlations with confidence
intervals

Variable M SD 1

1. Likes 14672.27 18197.74

2. Attractiveness 5.18 2.75 L 76X*
[.30, .93]

Note. M and SD are used to represent mean and standard

deviation, respectively.

Values in square brackets indicate the 95% confidence interval.

The confidence interval is a plausible range of population
correlations

that could have caused the sample correlation (Cumming, 2014).
* indicates p < .05. ** indicates p < .01.

17.3.4.2 Effect Size

The effect size for correlation is known as the coefficient of determina-
tion (R?). It is simply the correlation squared and it tells us the proportion
of variance in one variable that is accounted for by another variables; it is
usually expressed as a percent (i.e., R? = .348 would be written as 34.8%.
Sometimes you may encounter it expressed as the amount of variance in
one variable that can be ‘explained’ by another variable. Note that this
does not mean that one variable causes another.

R2 — (?“)2
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17.3.5 5. Write your results/conclusions

We hypothesized that the number of likes on an Instagram post would
be correlated with the rated Attractiveness of the poster. The results
suggest that our data are unlikely given a true null hypothesis, r = .763,
95%C1[.30,.93],df = 9, p = .006, R?> = .582. Approximately 58.2% of the
variance in Likes can be explained by Attractiveness, indicating a strong
effect size.

17.4 Conclusion

You will encounter correlations a lot in psychological research. They
are used in both descriptive and inferential statistics. They are used to
describe your data set, and to make inferences about population para-
meters. They will be imperative in future chapters about regression and
related designs.

175 rinR

We can use the cor.test() function, where we specify the two variables
we wish to correlate.

cor.test(dat$Likes, dat$Attractiveness) #our data was called
‘dat'

Pearson's product-moment correlation

data: dat$Likes and dat$Attractiveness
t = 3.542, df = 9, p-value = 0.0063
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.300882 0.934957
sample estimates:
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cor
0.763035

Note that R provides many useful pieces of information: r, ¢, and p. It
also gives us the 95%CI (which is for 7). You can use r as an effect size,
but R? (squaring r), the coefficient of determination, also indicates the
proportion in one variable that is explained by the other. Here, 58.22%
of the variance in Likes can be explained by knowing the Attractiveness
rating of the poster. Note: again, this does not mean causes. It means by
knowing someones Attractiveness/Likes, we have a fairly reliable guess
at what the other would be.

Plotting

The standard way to plot two continuous variables is through a scatter-
plot.

45000 ®
40000 ®
35000
) 30000 ®
8 25000
= 20000 ® ®
15000
10000
5000
o @ ] (] o
1 2 3 4 5 6 7 8 9 10

Attractiveness
Figure 12: Scatterplot of data.

It's important to visually inspect your data. For example, the datasauRus
package (Gillespie et al., 2025) shows a quick demonstration how two
variables’ relationship can be vastly different even with the exact same
means, standard deviations, and correlations. As is the case for each of
the following data sets:
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17.6 Practice Questions

Using the following data, which were measurements of sizes of children’s
books:

Height Width

10 4
9 11
18 16
4 6
15 20
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Height Width

12 13
11 16
9 12

Calculate the correlation, and write the results up (including r, p, and the
Cl if you use R).

Draw a quick scatterplot of the data (put width on the x-axis).

17.7 Answers

Effect sizes were labelled following Funder's (2019)
recommendations.

The Pearson's product-moment correlation between df prac$Height
and

df prac$wWidth is positive, statistically significant, and very
large (r = 0.72,

95% CI [0.04, 0.95], t(6) = 2.56, p = 0.043)

18 Q@
16
©
14
2 12 (@)
2 )
Tio @
(ORN©)
8
6
4 ©
4 6 8 10 12 14 16 18 20
Width
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18 Simple Regression

18.1 Some Additional Details

Prior to diving into the data, let’s revisit some high school math! We have
already encountered this in sections referring to our models, but let’s go
back to basics. You likely recall y = mx + b, the function of a line. Recall
that we can determine the y-position of a line by knowing the x position,
the slope, and the y-intercept of that line. Consider the following:

8

Hopefully, you can see that the line crosses the y-axis at 3. Furthermore,
the slope can be calculated by % or, rise over run. This is represented
by the red lines. Using rise over run, we get: %222 = 1 = 0.5. Thus, the
above line is represented by y = 0.5z + 3. We can readily predict what

the value of y would be by knowing the value of x. For example, by
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knowing that = = 3, we could determine thatyisy = 0.52 + 3 = 0.5(3) +
3 =4.5.

© Practice Question

Determine the equation for the following line:

10

Figure 13: Line graph.

O Answer

y=—lz+9

You may be thinking, “STOP TYLER", but this is relevant. This equation
maps nicely onto our more general linear models that we have been
using in our analyses:

y; = model + e,

Where y, is the outcome for individual i, the model is based on our
hypotheses and resulting analyses, and e, is the error for individual i (i.e.,
what the model does not explain).

Imagine that instead of x and y, we had a independent and a dependent
variable. We wanted to predict someones depression score (y; and
measured on a scale of 1 — 14) by knowing the number of cognitive dis-
tortions they have on average each day. It might look like the following:

296



[ ] [ ]
10 b
e [ ]
3
0 8 [ J [ ]
c
S
(2]
7))
0 6 ° ° ° °
&
() [ J
4 [ J [ ]
[ ]
2 e °
4 6 8 10 12 14 16 18 20

Number of Cognitive Distortions

We can try to fine a straight line that fits all those points, but that's
impossible. For example, maybe we can guess that that y-intercept is
around 2.5, and the slope is about 0.5. This would result in:

12 1
[ ] [ J
10 b
e [ ]
3
0 8 [ J [ ]
c
Q
/)]
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0 6 ° ° ° °
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a °
4 (] [ ]
[ ]
2 e °
4 6 8 10 12 14 16 18 20

Number of Cognitive Distortions

That's not too bad of a guess...but what it seems to have a lot of error.
Our line doesn’t do a great job fitting on all the points. We can measure
how much error it has by measuring the distance from the points to the
line:
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Here, error is represented by the dotted lines. That is, we guessed that:

dep = 2.5 + 0.5(Distortions)

That someone’s depression score would be 2.5 plus 0.5 times the number
of distortions they have. But that would mean that the points fall directly
on the line. Thus, the distance between each point and the line is the
error. Let’s consider person 1 (circled below):

Depression Score

4 6 8 10 12 14 16 18 20
Number of Cognitive Distortions

This person had, on average, 17 cognitive distortions per day and had
a depression score of 12. Our line would not predict a depression score
of 12.

depression = 2.5 + 0.5(distortions) = 2.5+ 0.5(17) = 11
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The difference between 12 and 11 is the error for individual 1. We call
this a residual. The residual for individual 1 is 1.

For person 1:

12=25+0.5(17) + 1

Perhaps there is a better line that would minimize the errors across all
the observations? That is, if we calculated the error for every person, as
we did for person 1, the total of the squared errors would be 115.75.
Let’s try to lower this number.

18.2 Ordinary Least Squares

Ordinary Least Squares (OLS) is an algebraic way to get the best possible
solution for a regression line. It minimizes the error of the line. Typically,
in psychology we write a simple regression as the following, where 3 are
referred to as coefficients:

Y = by + b1z +e;

Where § is the predicted score on y, the dependent variable,
by is the intercept coefficient,

b, is the slope coefficient,

z, is the score of individual i on the independent variable, and
e, is the residual for individual i.

Math people have figured out the optimal solution to find these coeffi-
cients. The following are solutions to OLS simple regression:

COV(,,

2
T

Y)

S

Where oV, ) IS the covariance between x and y, and s2 is the variance

of x. For us:

e Covariance = 12.871053
¢ Variance = 25.292105

299



® Mean of depression = 11.85
® Mean of distortions = 6.85

Thus:
12.87105
1= 5500011 000889
And the intercept solution is:

Therefore:

b, = 6.85 — 0.50889(11.85) = 0.81965
You did it! Our best possible fitting line is:
y; = 0.81965 + 0.50889(z;) + e;

If we were to calculate the sum or the squared residuals for each person,
we would get 66.1. This is lower than the line that was built on our best
guess. In fact, this is the smallest possible value. We can see compare
our original line with the line of best fit:

12 B

Depression Score

4 6 8 10 12 14 16 18 20
Number of Cognitive Distortions

Sometimes in psychological researcher, people try to determine if know-
ing an individual’s score on one variable will allow us to predict their
score on another variable. For example, by knowing someone is severely
depressed, can we predict the likelihood they will attempt suicide? By
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knowing a student’s social support, can we predict how many classes
they will attend in university? By knowing how many classes someone
attends, can we predict their grade in the course? In all of these example,
the predictor (or as you will learn in the next chapter, set of predictors) is
often termed the independent variable(s) (z), and the outcome/criterion
variable is the dependent variable (y). When we have only one predictor,
we refer to this as a simple regression. Note: this is not way implies
that x causes y. Consider prediction much like a relationship or asso-
ciation, as discussed in the last chapter on correlations.

Q Tip

Note that a regression is not necessarily an experiment, despite
sometimes using the terms independent and dependent variables.

18.3 Key Assumptions

There are a few basic assumptions for regression analyses:

1. Homoscedasticity: The variance of the residuals (i.e., error terms)is
constant across different levels/values of the IV. That is, the spread of
data around the line of best fit should be similar all along the line.

It can be hard to visualize with a diagonal line, so a formal analysis can be
done. We can plot the residuals on the y axis and the predicted values
(sometimes terms fitted values) on the x-axis. Here, we want a relatively
straight line around 0, indicating an mean residual of 0. Furthermore, we
want the dots to be dispersed equally around each predicted value. It’s
hard to determine with our data because there are so few points.

2. Independence: Each observation is independent; thus, each residual
is independent. You must ensure this as a researcher. For example, if you
had repeated measures (e.g., two observation from each person), then
these would not be independent.

3. Linearity: The relationship between IV and DV is linear. We can visually
assess this using a scatterplot. We hope that the points seem to follow
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a straight line. We can fit our line of best fit from OLS to help with this.
Consider the following, which depicts a linear relationship:

Our data appear quite linear. For your own reference, here is an example
of a non-linear relationship. It is a quadratic relationship (yes, like you
remember from math y = z2):

Quadratic

X

Dotted line is true line of best fit. Solid line is line of best fit resulting from a OLS regression.

4. Normality of residuals: We can asses using Q-Q plots and Shapiro-
Wilk, which was covered in a previous chapter. Remember, the null
hypothesis of the SW test is that the data are normally distributed.
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18.4 Get some shut eye

You are a psychologist investigating the impact of technology use at
night and sleep quality. You conduct a literature review and believe
that the amount of screen time within two hours before ‘bedtime’ will
negatively impact the total time in REM sleep during for that night.

18.4.1 1. Generating hypotheses

Regression hypothesis reference s (betas), which are regression coef-
ficients. The population parameter will be called 3, while that sample
statistic will be b. Thus, our hypothesis (we will use a two-tailed test) is:

Null:

H,:5=0
Alternative:

Hy:B#0

Recall that we started by relating our regression to y = mx + b, specif-
ically:

outcome; = (model) + error;

And we are hypothesizing that the outcome is the function of some
variables, so we can now say:

Y; = by + by (z1;) + e

Where y, is the DV for individual i, b, is the intercept, b, is the coefficient
for the IV, and e; is the residual for individual i. So, our best guess at
an individual’'s REM sleep will be a function of two coefficients. Any
differences between our guess (i.e., predicted value) and the actual REM
sleep (i.e., observed value) is error.
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18.4.2 2. Designing a study

You decide to recruit students and ask them to measure both screen time
before bed (IV) and access their Apple Watch data to assess the amount
of time in REM sleep during the night (DV). Specifically:

Sample Size Determination: You review the literature and believe that
the link between screen time and sleep is negative. Specifically, your best
guess at the population parameter is R? = .25, which can be converted
to f2 =.3333 (f2 = %. We will conduct a power analysis. For simple
regression, the degrees of freedom for the numerator is n, — 1 (number
of coefficients, including intercept, minus 1). You must include the inter-

cept! So our df,, =2 —1 = 1. The power analysis is as follows:

umerator

Multiple regression power calculation

u=1
v = 23.6195
f2 = 0.3333
sig.level = 0.05
power = 0.8

So, the results suggest that v = 23.62. We will round to 24. But what does
this mean? The degrees of freedom, v, is: df .nominater = N — M (total
sample size minus total coefficients, including intercept). Thus, 24 = N —
2 can be rearranged to N = 24 + 2 = 26. Thus, we recruit 26 individuals.

Participants: Participants will be undergraduate students aged 18-25
recruited from a Grenfell Campus through email invitations and campus
advertisements. Inclusion criteria require that participants own an Apple
Watch capable of tracking sleep stages. All participants will provide
informed consent prior to participation.

Measures: Screen time before bed will serve as the independent
variable and will be measured in minutes prior to sleep using each
participant’s device-based screen time tracking feature (measured for
two hours prior to students self-imposed bedtime; range: 0-120mins).
The dependent variable, REM sleep duration, will be measured in
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minutes using Apple Watch sleep tracking data. Participants will also
complete a brief demographic questionnaire and report general sleep
habits to account for potential confounding factors.

Procedure: After consent and baseline data collection, participants
will record their screen time and wear their Apple Watch overnight.
Participants will submit their screen time logs and Apple Watch sleep
summaries via a secure online form. All data will be anonymized prior
to analysis. Statistical analyses will include Pearson correlation and, if
appropriate, multiple regression to examine the relationship between
screen time and REM sleep duration while controlling for confounders.

18.4.3 3. Collecting data

Our data is as follows:

ScreenTime REM

64 125
79 115
50 112
83 95
48 117
45 107
63 92
14 112
57 126
92 52
62 86
16 125
34 120
68 116
76 124
100 90
41 119
76 81
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ScreenTime REM

105 85
58 116
33 89
81 41
65 99
44 121
58 95
95 58

And we can represent is as a scatterplot:
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18.4.4 4. Analyzing data

We can use the formulas above to solve the regression equation. We will
need the mean of the IV (Screen Time), mean of the DV (REM Sleep),
their covariance, and the variances. These are as follows:

Mean_Screen Mean_REM Var_Screen Var REM Cov

61.81 100.7 572.4 548.9 |-321.3

Thus:
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covsT rREM)  —321.3015

= = —0.5613
SZp 572.4015

1:

We interpret this as, for every 1-unit change in Screen Time (which was
in minutes), we would predict a 0.5613 unit decrease in minutes of REM
sleep. Thus, for every minute more of screen time, we would predict
0.5613 less minutes of REM sleep.

We must also solve for b,.

by =y — b;T = 100.6923 — 61.80769(—0.5613) = 135.385

Interpreting intercept coefficients is relatively straight forward. We
would predict someone with NO screen time before bed (x = 0) to get
135.34 minutes of REM sleep. Note: sometimes it makes no sense to
interpret the intercept. For example, imagine a regression equation that
predicts height using weight (y;, = b, + b,,z,, + €;). We would interpret
b,, the intercept, as ‘'we would predict a height of XXX for someone with
NO weight; that doesn’t make sense!

We have our final equation!

y; = 135.39 + (—0.561)(z;) + e,

2

18.4.4.1 Effect Size

Effect size for simple regression is R?, which is interpreted as the amount
of variance in the outcome that is explained by the model. Since we have
only one predictor, R? is simply the squared correlation between the one
IV and the DV. The correlation between Screen Time and REM Sleep is
—0.573233. Thus:

R? = (r)? = (—0.5732328)% = 0.329
Therefore, the model explains 32.9% of the variance in REM Sleep.

18.4.4.2 Our Assumptions

1. Homoscedasticity: The residual variance is constant across different
levels/values of the IV. R can produce a plot of residuals across each fitted
value of .
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Residuals vs Fitted
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Im(REM ~ ScreenTime)

Here, we want a relatively straight line around 0, indicating an mean
residual of 0. Furthermore, we want the dots to be dispersed equally
around each fitted value. It's hard to determine with our data because
there are so few data points. However, we can be relatively confident
that they are homoscedastic.

2. Independence: Each observation is independent; thus, each residual
is independent. You must ensure this as a researcher. For example, if you
had repeated measures (e.g., two observation from each person), then
these would not be independent.

3. Linearity: The relationship between IV and DV is linear. We can visually
assess this using a scatterplot. We hope that the points seem to follow
a straight line. We can fit our line of best fit from OLS to help with this.
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Our data appear linear.

4. Normality of residuals: We can asses using Q-Q plots and Shapiro-
Wilk, which was covered in a previous chapter. Remember, the null
hypothesis of the SW test is that the data are normally distributed.

Normal Q-Q Plot
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Shapiro-Wilk normality test

data: our _model$residuals
W = 0.9659, p-value = 0.521
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18.4.5 5. Write your results/conclusions

We fitted a linear model to predict REM Sleep with Screen Time.
The model explains a statistically significant and substantial proportion
of variance, R? = 0.33, F(1,24) = 11.75, p = 0.002. Screen Time was a
statistically significant and negative predictor of REM sleep, b = —0.56,
95% CI[—0.90,—0.22], t(24) = —3.43, p = 0.002.

18.5 Conclusion

Simple regression takes a predictor and tries to explain the variance
in an outcome. Often times researchers want to predict the value on
one variable, knowing another. Consider these example: by knowing
a student’s social support, can we predict how many classes they will
attend in university? By knowing how many classes someone attends,
can we predict their grade in the course? In the upcoming chapter, we
will add to simple regression to help answer more complex research
questions. We will have more than one predictor and begin to model
complex interactions among predictors.

18.6 Analysis in R

Regression and ANOVAs fall under the ‘general linear model’, which
indicates that an outcome (e.g., y;, DV) is the function of some linear
combination of predictors (e.g., b,(z;)). We can use the lm() (linear
model) function to write out our regression equation.

Im(REM ~ ScreenTime, data=sr data)

Note that here, | have a data frame called sr_dat with two variables called
ScreenTime and REM. The ~ symbol is the same as ‘equal’ or predicted
by. So, we have REM is predicted by ScreenTime. R will automatically
include an intercept and the error term.
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The results of Im(REM ~ ScreenTime, data=sr data) should be passed
into a summary () argument. So, first, let’s create our model!

And then pass that into the summary function:

Call:
Im(formula = REM ~ ScreenTime, data = sr_dat)

Residuals:
Min 1Q Median 3Q Max
-48.92 -10.80 4.19 10.64 31.27

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 135.386 10.828 12.50 5.3e-12 ***
ScreenTime -0.561 0.164 -3.43 0.0022 **
Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 19.6 on 24 degrees of freedom
Multiple R-squared: 0.329, Adjusted R-squared: 0.301
F-statistic: 11.7 on 1 and 24 DF, p-value: 0.0022

Another Way

The apaTables package also has a lovely output, and can save a word
document with the output.

Regression results using REM as the criterion

Predictor b b 95% CI beta beta 95% CI sr2
sr2 95% CI
(Intercept) 135.39** [113.04,
157.73]
ScreenTime -0.56** [-0.90, -0.22] -0.57 [-0.92, -0.23] .33
[.05, .55]
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r Fit

- 57%%
R2 = .329%**
95% CI[.05,.55]

Note. A significant b-weight indicates the beta-weight and
semi-partial correlation are also significant.

b represents unstandardized regression weights. beta indicates
the standardized regression weights.

sr2 represents the semi-partial correlation squared. r
represents the zero-order correlation.

Square brackets are used to enclose the lower and upper limits
of a confidence interval.

* indicates p < .05. ** indicates p < .01.

While the regular tm() function gives exact p-values, the apa. reg.table()
function gives more info such as Cls, r, sr, and effect size.

18.7 Practice Question

1. Generate the regression equation for the following data that investi-
gating the Graduate Record Exams ability to predict GPA in graduate
school.

2. Interpret the intercept and coefficient for GRE.
3. Write the hypotheses.

4. Write up the results.

Student GRE GPA

1 163 | 1.6
2 171 [ 1.9
3 173 | 1.8
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Student GRE GPA

4 139 | 3.1
5 174 | 3.9
6 139 | 1.7
7 162 | 1.6
8 141 | 3.6
18.8 Answers
1.
Call:

Im(formula = GPA ~ GRE, data = dat prac)

Residuals:
Min 1Q Median 3Q Max
-0.910 -0.744 -0.390 0.620 1.682

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 4.1708 3.9497 1.06 0.33
GRE -0.0112 0.0249 -0.45 0.67

Residual standard error: 1.03 on 6 degrees of freedom
Multiple R-squared: 0.0327, Adjusted R-squared: -0.129
F-statistic: 0.203 on 1 and 6 DF, p-value: 0.668

Y; = by + by (zq;) e

2.

Intercept: Someone with a score of 0 on the GRE would be predicted to
have a score GPA of 4.17 (this is impossible).

Slope: For every one unit increase in GRE score, we would predict a
0.011 unit decrease in GPA.
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3.

Hy:b,=0
HAbl?éO
4.

We fitted a linear model to predict GPA with GRE. The model did
not explain a statistically significant proportion of variance R? = 0.03,
95%C].00, .41}, F(1,6) = 0.20, p = 0.668. The effect of GRE is statistically
non-significant, b = —0.01, 95%CI[—0.07,0.05], t(6) = —0.45, p = 0.668.
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19 Multiple Regression

This chapter will cover multiple regression, a statistical method used to
examine the relationship between a dependent (or outcome/criterion)
variable and multiple independent (predictor) variables. Unlike simple
regression, which involves only one predictor, multiple regression allows
researchers to assess the combined influence of several predictors on an
outcome. But why do researchers need multiple predictors?

Using multiple predictors in regression allows researchers to better un-
derstand complex relationships between variables. Real-world psycho-
logical phenomenon are rarely caused or influenced by a single factor;
instead, they result from multiple interacting influences. Furthermore, by
including multiple predictors, we can control for confounding variables,
improve the accuracy of our predictions, and gain a more comprehensive
understanding of how different factors contribute to an outcome.

19.1 Some Additional Details

Multiple regression is useful in situations where we expect multiple
factors to influence an outcome. For example, a researcher might want
to predict job performance based on cognitive ability, motivation, and
job experience.

The general form of the multiple regression equation is:
Yi = Bo + b1y + Bozg + .. + Bz, T g
where:

e Y is the dependent variable (outcome of interest),

315



Xy, X,, ..., X,, are independent variables (predictors),

B, is the intercept (value of Y when all predictors are 0),

® 3,0s,..., 3, are regression coefficients representing the effect of each
predictor on Y,

® ¢ is the error term.

19.2 Key Assumptions

Like all of our analyses thus far, a multiple regression analysis is
valid model under the following assumptions (many we have already
explored):

1. Linearity: The relationship between each predictor and the depen-
dent variable should be linear.

2. Independence of Errors: Observations should be independent, and
errors should not be correlated.

3. Homoscedasticity: The variance of errors should be constant across
all levels of the independent variables.

4. Normality of Residuals: The residuals (errors) should be normally
distributed.

5. No Multicollinearity: Predictor variables should not be highly corre-
lated with one another. More to come.

Prior to further exploring our hypotheses and conducting a formal
analysis, an explanation of various types of correlations is needed. Cor-
relations help us understand the relationships between variables and are
particularly important in multiple regression, where we assess the contri-
bution of multiple predictors to an outcome variable. We have explored
some of these, but revisit them so they are fresh in your mind.
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19.3 Types of Correlations

19.3.1 Pearson Correlation Coefficient

We have already explored correlation, r, in a previous chapter. Recall that
when we square the correlation, we obtain the coefficient of determi-
nation (R?), which indicates the proportion of variance in one variable
that is accounted for/explained by (not to be confused with CAUSED
BY) the other. This provides insight into how strongly two variables are
related, but it does not imply causality. Recall that one formula for the
Pearson correlation coefficient is:

where:

X, and Y; are individual data points,

X and Y are the means of the variables,

The numerator represents the covariance between X and Y,

The denominator standardizes the covariance by dividing by the
product of the standard deviations.

To visualize the coefficient of determination, consider the following two
variables: z; and y.

X4
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Figure 14: Venn diagram.
Here:

e B+ C represents the total variance in y, or 03

e C represents the variance in y that is accounted for/explained by z,,
or R?

* B represents the variance that is unaccounted for in the model

19.3.2 Semi-Partial Correlation (Part Correlation)

The semi-partial correlation, denoted as r,(, ,2) (Where we have three
variables: z,, x5, and y), measures the unique relationship between one
predictor and the outcome variable after controlling for the effects of
another predictor on that predictor (but not on the outcome variable).
This is particularly useful when we want to understand how much unique
variance a predictor contributes to the dependent variable without
adjusting for other predictors’ influence on the outcome.

For example, if we are examining the relationship between study hours
(z,) and exam scores (y), while controlling for prior GPA (), the semi-
partial correlation tells us how much variance in exam scores is uniquely
explained by study hours that is not shared with prior GPA.

In short, it is the variance uniquely explained relative to all of criterion.
Let’s visualize this regression model, wherein we have two predictors, z;
and z,, predicting the criterion, y:
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X2
Figure 15: Semi-partial correlation.

We can assign each region of the above figure a letter:

X4

Xy
Figure 16: Sections of semi-partial correlation.
In this figure:

e £+ F + G + C represents the total variance in y, or az
e £+ F + G represents the total variance explained by the model, or
R2
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e C represents the unaccounted for/unexplained variance in y, or 1 —
R2

e E + F represents the total variance in y explained by z,, or r?cl

e E represents the unique variance in y explained by z,

* F' + G represents the total variance in y explained by z,, or 7“9202

* G represents the unique variance in y explained by z,

* F represents the shared variance in y explained by z; and z,

Y

Yy

In the regular Pearson correlation, E + F' would have been considered
the variance in y explained by z,. However, some of this variance is also
explained by z,. One way to represent this is by the squared semi-partial
or part correlation (note: we are squaring it to give us the ‘proportion
of variance’, just as we did in correlation). The squared semi-partial/part
correlation of z; and y would be:

5 E

Twl(y-i%) C + E + F + G

Or, simply:

2 _p2_ .2
T"?l(y-wz) =R T$2y

In the above formula we are, essentially, saying that 3 (, ,  is the differ-
izy, the total variance in y
explained by z,. Logically, this means that in this two predictor model,
any variance in y that is not explain by z, is uniquely explained by z;.
Note the differences in the notation between the Pearson correlation
and the part correlation that accounts for z2,

ence between R?, the total variance in y and r

between the two, r, ,,

Tﬂh(y-xz)'

| Practice

1. What regions would represent the squared semi-partial/part cor-
relation of z, and y?
2. What would be the mathematical formula?
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| Answers

1. r? = e

© Tzy(ymy) T CHE+HF+G
2 _ p2_ 2

2. Tmz(y~951) =R Tz.y

19.3.3 Partial Correlation

The partial correlation, denoted as or Tyly.z,r ASSESSES the direct rela-
tionship between a predictor and the outcome variable after controlling
for the influence of other predictors on both the predictor and
the outcome. This differs from the semi-partial correlation because it
removes the effect of control variables or other predictors (in our above
example, z,) from both the predictor of interest and the outcome.

2

21y.0, tells us the pro-

Mathematically, the squared partial correlation, r
portion of variance in y that is uniquely explained by x, after removing
the influence of all other predictors. In short, it is the variance uniquely

explained relative to the unexplained variance of the criterion.

The squared partial correlation of z; and y would be:

5 E
rmly.mZ = C+E
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Or, mathematically:

2 .2
2 RE =y
TYTy T ] g2
T2y

Both partial and semi-partial correlations help us understand how an
independent variable (IV) relates to the dependent variable (DV) while
accounting for other variables in a regression model. However, they
answer slightly different questions. Here is a quick reference to help you.

1. Partial Correlation — “What is the pure relationship between this
predictor and the outcome?”

e It tells you how much an IV is related to the DV after removing the
influence of other Vs from both the predictor and the outcome.

e Example: If you're studying how stress affects exam scores while con-
trolling for sleep, the partial correlation tells you the direct relationship
between stress and scores as if sleep was completely removed from
the equation for both stress and scores.

2. Semi-Partial (Part) Correlation — “How much does this predictor
add to the model’s ability to predict the outcome?”

e It tells you how much an IV uniquely contributes to explaining the DV
without adjusting the DV itself.

e Example: If you add stress as a predictor to your exam scores model
(which already includes sleep), the semi-partial correlation tells you
how much extra variance in exam scores is explained just by stress
(after removing overlap with sleep in stress but not in the scores).

In this class we will primarily use the semi-partial/part correlation-mostly
the squared semi-partial correlation—in our regression analyses. With this
in mind, let’s continue with a practical example involving our favorite
musician, Taylor Swift.
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19.4 Regression...you can do it with a broken
heart.

Taylor Swift and her team are consulting you, a research expert, to help
determine what features of music determine the popularity it achieves.
She hopes to use your findings to write new music. Specifically, she is
interested in knowing whether certain characteristics of music are more
likely to get played on Spotify. Taylor and her team have a theory that
they have called the "Rhythmic Positivity Theory”. This proposes that
songs with higher danceability and happier tones are more popular
because they elicit positive emotions and encourage social engagement.
Taylor also has specific hypotheses: that both both positively valenced
(i.e., happy) and danceable songs will be more popular.

19.5 1. Generating hypotheses

In regression you hypothesize about coefficients, typically referred to as
Bs (beta). Other times you may hypothesize about the full model (i.e.,
variance explained in the outcome; R2). Thus, we could have two differ-
ent sets of hypotheses. The most common will refer to coefficients. Here,
we could convert our text-based hypotheses to statistical hypotheses:

HO : Bdance = 0 and ﬂvalence =0

and

HA : IBdance 7/: 0 and Bvalence # 0

None

More generally, you would simply have:

H,:8,=0

HA:IBS#O
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We will use #+ for these alternative hypotheses because they could be
positive or negative and we are doing a two-tailed test. The second type
of hypotheses we may propose have to do with the full model, and how
well it accounts for variance in the outcome (i.e., DV/criterion):

HA . R2 > 0
We use > for this hypothesis because R? cannot be negative.

While these are our main hypotheses, we should also try to conceptualize
our study’s model. Our model can be represented as follows:

Yi = 60 + ﬂdance (xdance,i) + ﬁvalence (xvalence,i) + €;

Where:
T gance s 18 iNdividual i's score on danceability
°* - is individual i's score on valence

valence,i

* 3, is the intercept of the model
® Biance 1S the coefficient for danceability
is the coefficient for valence

6valence
e ¢, is individual i's error

19.6 2. Designing a study

While Taylor has given you a $3,000,000 budget, you decide to put that
money in you RRSP, cheap out, and collect publicly-available data from
Spotify. You decide that you will collect a random sample of songs from
Spotify and use a computer to estimate the valence and danceability
of the songs. These are both measured as continuous variables. You
decide to use a regression to determine the effects of both variables on
a song's popularity (number of plays on Spotify in 2025, in millions). All
variables are continuous (although regression can handle most variable
types; ANOVA is just a special case of regression).
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You do a power analysis and determine you need a sample of approx-
imately 50 songs.Prior to conducting your research, you submit your
research plan to the Grenfell Campus research ethics board, which
approves your study and classified it as low-risk.

19.7 3. Collecting data

You follow through with your research plan and get the following data:

track_artist track_name  Popularity Valence Danceability
Camila Cabello My Oh My 208 13 2
(feat. DaBaby)
Tyga Ayy Macarena 95 17 7
Maroon 5 Memories 200 23 4
Harry Styles Adore You 62 9 9
Sam Smith How Do You 189 22 4
Sleep?
Tones and | Dance Monkey 87 19 7
Lil Uzi Vert Futsal Shuffle 140 1 5
2020
J Balvin LA CANCION 144 14 5
Billie Eilish bad guy 129 6 7
Dan + Shay 10,000 Hours 141 8 5
(with Justin
Bieber)
Regard Ride It 191 13 3
Billie Eilish bad guy 175 19 5
The Weeknd Heartless 126 13 4
Y2K Lalala 112 18 5
Future Life Is Good 36 16 8
(feat. Drake)
Lewis Capaldi | Someone You 76 17 6
Loved
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track_artist

track_name

Popularity Valence Danceability

Anuel AA China 185 22 4
Regard Ride It 162 17 5
Dua Lipa Don't Start 144 7 4
Now
Anuel AA China 144 12 5
Regard Ride It 133 13 5
Bad Bunny Vete 107 13 6
Roddy Ricch The Box 142 7 2
Juice WRLD Bandit (with 109 12 7
YoungBoy
Never Broke
Again)
Roddy Ricch The Box 247 25 4
Regard Ride It 133 14 5
Trevor Daniel Falling 149 11 4
Anuel AA China 190 15 3
Shawn Mendes Senorita 140 8 4
Travis Scott HIGHEST IN 186 10 3
THE ROOM
Juice WRLD Bandit (with 164 21 4
YoungBoy
Never Broke
Again)
Camila Cabello My Oh My 135 22 6
(feat. DaBaby)
Sam Smith How Do You 113 12 5
Sleep?
Harry Styles Adore You 129 10 4
Don Toliver No Idea 53 20 7
Billie Eilish everything i 133 20 5
wanted
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track_artist

track_name

Popularity Valence Danceability

Lil Uzi Vert Futsal Shuffle 65 21 7
2020
DaBaby BOP 111 16 5
Lil Uzi Vert Futsal Shuffle 18 23 8
2020
blackbear hot girl 166 17 4
bummer

Tones and | Dance Monkey 198 13 2

Tyga Ayy Macarena 87 13 6

Selena Gomez Lose You To 113 11 5

Love Me

Dalex Hola - Remix 106 15 5

The Black Eyed RITMO (Bad 100 11 8
Peas Boys For Life)

Arizona Zervas ROXANNE 116 11 6

The Black Eyed RITMO (Bad 111 4 6
Peas Boys For Life)

Arizona Zervas ROXANNE 101 14 6

Roddy Ricch The Box 57 13 8

MEDUZA Lose Control 119 23 6

19.8 4. Analyzing data

19.8.1 Matrix Algebra

Matrix algebra can be used to ‘solve’ our regression equation. However,
we will not use matrix algebra to solve our regression coefficients in this
class. For those interested, we could using the following (see here for
more information):

(X’ X)'X'Y
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Where X is a n (number of observations) by v (number of predictors,
including intercept) matrix of scores. The score on the ‘intercept’ is 1 for
all observations. Y is a n by 1 vector of scores on the DV.

The results from our matrix algebra would work out to:

237.42
1.09
—23.79

Where each row is 3, to 5. Thus, the equation would be:
Y, = 237.42 + 1'09(xvalence,i> + (_2379) (mdance,i> + €;

When we had one variable, we could effectively visualize a line of best
fit. We can visualize a ‘plane’ of best fit when we have two predictors.
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Figure 17: 3D Scatterplot.

As we now have more variables, the visualization becomes difficult. We
struggle to interpret anything beyond 3D!

19.9 SST

Like simple regression, sum of squares total (SST) represents the differ-
ence between the observed scores on the outcome/criterion and the
mean of the outcome/criterion.

SST = (y;— )’
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19.10 SSE

Like simple regression, the sum of squares error/residual (SSE) represents
the difference between the observed scores on the outcome/criterion
and the predicted values of the outcome/criterion.

SSR=7 (4 — ;)"

19.11 SSR

Like simple regression, the sum of squares regression/model (SSR) rep-
resents the difference between the predicted values on the outcome/
criterion and the mean of the outcome/criterion

SSM =Y " (4,—9)°

For us, .

Given these, we can calculate the MSR (mean square of the regression;
with p — 1 degrees of freedom; p being the number of b coefficients) and
MSE (mean square error; with n — p degrees of freedom) and calculate
the appropriate F-statistic.

74669.74

MSR = — = 37334.87
and
118.
MSFE = M = 704.65
47
and

_ MSR 3733487

F =
MSE 704.65

= 52.98

And you can look up the associated p-value in any standard critical F
table. Or R can calculate it for us using pf(g=52.98, dfl=2, df2=47) (the
probability of F with our given).
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19.12 Effect Size - R?

Like simple regression, we can calculate an effect size (R?). We can
calculate this using:

SSE  33118.68
SST  107788.42

R2=1-— .69

So how might we interpret this in the context of our original hypotheses?
First, consider R?. We can conclude that the model explains a statistically
significant and substantial proportion of variance in popularity R = 0.69,
95%CI|[.52,.77], F(2,47) = 52.98, p < .001, R2,. = 0.68).

adj
Second, consider the hypotheses regarding the unique predictive ability
of each individual predictor, which concerns each’s sr?. We can conclude
that Valence is not a statistically significant predictor of song pop-
ularity, b = 1.09,p = .126, sr? = .02,95% C1I[—.02,.05]. However, Dance-
ability was a statistically significant predictor of song popularity,
b= —23.79,p =< .001, sr? = .69,95% CI[.54,.83]. Thus, for every 1-unit
change in Danceability, a song’s popularity is expected to decrease by
23.79, while holding all other predictors constant.

This later piece is important for interpreting regression models. A
predictor’s impact is dependent on holding all other aspects of the
model constant. If | added a new predictor, the whole model would likely
change, including the Danceability coefficient. If | removed the Valence
predictor from the model, even though it was not statistically significant,
| would expect the Danceability regression coefficient to change.

19.12.1 Measures of Fit

19.12.1.1 R?

Our effect size is similar to simple regression and represents the propor-
tion of variance the model explains in the outcome. It represents the total
contribution of all predictors and is multiple R? (multiple given multiple
predictors).

As discussed, R? can be calculated as:
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SSE 33118.68

R2 = 1 — = = .
SST  107788.42

R? can never go down when we add more predictors. Thus, getting large
values for models with lots of variables in unsurprising. However, it does
not indicate that any single predictor is doing a good job at uniquely
predicting the outcome. More to come on this.

19.12.1.2 Adjusted R?

While R? measures the proportion of variance explained by the model,
it has a known limitation: it always increases (or stays the same) when
more predictors are added, even if those predictors do not meaningfully
contribute to explaining the outcome. To account for this, Adjusted R>
adjusts for the number of predictors in the model, penalizing excessive
complexity.

The formula for Adjusted R? is:

2 SSE/(n—p—1)
Radi_l_( SST/(n—1) )

Applying this formula:

R, =1 33118.68/(50 —2— 1)\ _ o
j 107788.42/(50 — 1)

Unlike R?, Adjusted R? can decrease if a new predictor does not
improve model fit beyond what would be expected by chance. This
makes it a more reliable metric when comparing models with different
numbers of predictors.

19.12.1.3 AIC

Akaike Information Criterion (AIC) is a fit statistic we can use for regres-
sion models (and more). The major benefit of AIC is that is penalizes
models with many predictors.

AIC = nln(SSE> + 2k

n

For our above model:
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16224
50

AIC =501n +2(4) = 297.11
Is this good? Bad? Medium? Hard to say. The smaller the number the
better.

19.12.2 Assumptions

The assumptions for multiple regression are similar to those in simple
regression, with one key addition: multicollinearity.

19.12.2.1 Multicollinearity

Multicollinearity occurs when two or more predictors in the model are
highly correlated, making it difficult to determine their unique contribu-
tion to the outcome. This can inflate standard errors, leading to unstable
estimates and misleading significance tests.

A common way to check for multicollinearity is by calculating the Vari-
ance Inflation Factor (VIF). Most statistical software will provide VIFs,

such as this:
Observations 50
Dependent variable Popularity
Type OLS linear regression

F(2,47) | 52.98
R2 0.69
Adj. Rz2| 0.68

Est.| S.E.| tval p| VIF

(Intercept) 237.42115.61| 15.2110.00| NA
Valence 1.09( 0.70 1.56(0.13 [ 1.01
Danceability -23.79| 2.32|-10.260.00|1.01

Standard errors: OLS

A VIF > 10 suggests severe multicollinearity, though some researchers
use a lower threshold (e.g., VIF > 5). If multicollinearity is detected,
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possible solutions include removing redundant predictors, combining
highly correlated variables, or using ridge regression to stabilize
estimates.

19.13 5. Write your results/conclusions

We conducted a multiple regression analysis to examine the associa-
tion between Valence, Danceability, and Popularity. The overall model
was statistically significant, suggesting that Valence and Danceability
explain a substantial proportion of the variance in Popularity, R?> = 0.69,
95%CI[0.52,0.77], F(2,47) = 52.98, p < .00L.

Examining individual predictors, the effect of Valence on Popularity
was positive but not statistically significant, b = 1.09, 95%C1[—0.32, 2.50],
t(47) = 1.56, p = 0.126. The squared semi-partial correlation (sr?) was
small and non-significant, sr? = 0.02, 95%CT — 0.02, 0.05].

Conversely, Danceability had a statistically significant negative ef-
fect on Popularity, b= —-23.79, 95%CI[—28.45,—19.12], B = —0.83,
95%C1[—1.00,—0.67], t(47) = —10.26, p < .001. Thus, for every 1-unit
increase in Danceability, we would expect a —23.79-unit decrease in pop-
ularity. Additionally, the squared semi-partial correlation was substantial,
sr? = 0.69, 95%C1[0.54, 0.83], indicating Danceability uniquely explained
a large proportion of the variance in Popularity.

These results suggest that Danceability is a strong negative predictor of
Popularity, while Valence does not significantly contribute to the predic-
tion of Popularity when controlling for Danceability.

19.14 Conclusion

Multiple regression is a power tool for your statistical toolbox. Using
numerous predictors, with different types of predictors, we can explain
variance in an outcome of interest. Allowing for multiple predictors
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can increase the complexity of phenomenon we study; indeed, many
phenomenon have multiple interacting influences in the real world.

In the next chapter, we extend regression to difference variable types
and their interactions.

19.15 Regression in R

There are multiple ways we can run a regression in R. We will use the
basic Im() function that we used in the simple regression chapter.

taylors model <- Lm(Popularity ~ Valence +Danceability,
data=taylor)

and the summary of that model:

Observations 50
Dependent variable Popularity
Type OLS linear regression

F(2,47) | 52.98
R2 0.69
Adj. Rz | 0.68

Est.| S.E.| tval P

(Intercept) 237.42115.61| 15.2110.00
Valence 1.09( 0.70 1.5610.13
Danceability -23.79| 2.32(-10.260.00

Standard errors: OLS

Also recall that the apaTables() package provides some additional infor-
mation that is useful for our interpretation.
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Regression results using Popularity as the criterion

Predictor b b 95% CI beta beta 95% CI
sr2 sr2 95% (I
(Intercept) 237.42** [206.02,

268.83]

Valence 1.09 [-0.32, 2.50] ©0.13 [-0.04,
0.29] .02 [-.02, .05]
Danceability -23.79** [-28.45, -19.12] -0.83 [-1.00,
-0.67] .69 [.54, .83]

r Fit

.06

= . 82**
R2 = .693**

95% CI[.52,.77]

Note. A significant b-weight indicates the beta-weight and
semi-partial correlation are also significant.

b represents unstandardized regression weights. beta indicates
the standardized regression weights.

sr2 represents the semi-partial correlation squared. r
represents the zero-order correlation.

Square brackets are used to enclose the lower and upper limits
of a confidence interval.

* indicates p < .05. ** indicates p < .01.
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20 Multiple Regression - Addi-
tional Considerations

This chapter will cover a few additional considerations for multiple
regression analyses. First, we will cover some diagnostic tests to assess
the validity of your analyses, including adjustments to your data-if nec-
essary. Last, we will cover types of variable entry methods for multiple
regression. These concepts will further your understanding of multiple
regression and increase the breadth of hypotheses you can test.

20.1 Diagnostics

A Diagnostics assess whether our regression model meets key assump-
tions, ensuring that our results are valid and interpretable. Importantly,
any violations of key assumptions can lead to biased estimates and
incorrect conclusions. Thus, diagnostics are not something that can be
ignored. We will visit two major diagnostics that focus on detecting
outliers and/or influential cases.

20.1.1 Outliers

Qutliers are observations—such as an individual’s score on a variable
or multiple variables—that differ substantially from the rest of the data.
These values stand out because they are unusually high or low compared
to the majority of observations. Outliers can occur for several reasons.
First, outliers may be due to unique characteristics of the individual.
Sometimes, an outlier reflects a genuine difference in one individual in
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a study. For example, imagine a study measuring depression severity
among college students. If one student has a diagnosed mood disorder
and experiences severe symptoms, their depression score may be much
higher than the rest of the sample. Second, outliers may be due to mea-
surement or data entry errors. Here, outliers result from mistakes such
as typing errors or incorrect coding of responses. Imagine a participant
who is entering their age in an online survey, but puts their year of birth
(2005) instead of age in years (20). The mean age of participants may
be concernedly high with this error not remediated. Last outliers may
results from sampling issues. If the sample includes individuals who do
not represent the target population, their scores may appear extreme
relative to others.

Outliers matter because they can influence statistical analyses. For in-
stance, extreme values can distort the mean of a variable, inflate variance
estimates, and affect correlation or regression results. Thus, researchers
should examine outliers carefully to decide whether they should be
retained, transformed (i.e., value changed), or removed.

Consider the following data that is presented on a scatterplot with a OLS
line of best fit:

5.0
(@)
25
(@)
0.0 - = =|== —@= = =
© o
(@)
25
2 1 0 1 2

x

Do you notice any data points that seem to not fit the trend of the data?
The point on the top right seems to be an exceptional case—unlike the
others. Let’s investigate what happens the OLS LOBF when this case is
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removed from the analysis. The original figure is presented on the left,
the new one on the right:

5.0

25

2.5

Hopefully you can see how the removal of this potential outlier has
reduced the magnitude of the residuals. In other words, our model
has less error. While in this example we can be quite confident of the
presence of an outlier, there are more objective ways for us to tests this.

There are many ways to detect outliers. We will focus on one major
method: standardized residuals. To understand these, we must familiar-
ize ourselves with residuals. Recall that in regression analyses we have
our observed outcome (y;) and our predicted outcome () (i.e., what
the regression model predicts the data to be). This difference was the
residual/error:

e; =Y, — Y

A standardized residual is one way to represent how far an observation
deviates from the model’s prediction. It takes the errors of a regression
model and standardized them by dividing by the standard deviation of
the residuals. Thus, we can measure a standardized residual with:

Standardized Residual = G

VMSE

As a general rule of thumb, larger residuals indicate potential outliers.
Like any normal distribution, we expect the distribution of errors to
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have 95% of the distribution within +2.58 and 99.9% within +£3.29. Thus,
should a residual fall beyond those values, we can conclude that it is
an extremely unlikely value and a potential candidate to remove from
our data. In our data, we can estimate the predicted score by filling in

the blanks in the regression equation. The regression equal solves to be
(using OLS):

y; = 0.3189 4 0.06126(z,)

Consider person 10, who's score on the outcome is 4.5 and score on
the predictor is around 2.27. Their observed outcome is 4.5 and their
predicted outcome is:

U0 = 0.3189 + 0.06126(2.27) = 0.4579

Thus, their residual is:

When we calculate the regression model we get a mean square error of
1.86767. Thus, the standardized residual is:

4042 4.042
V1.86767  1.3666

Sometimes your statistical software will calculate studentized residuals,
which are calculated as:

Standardized Residual = = 2.958

r. = €

' @Vl_hii

Where §,;) is the fitted value for i from the model excluding case i.
Studentized residuals are often considered a more robust indicator of
influence on a regression model.

In our data from above (including all cases), the top five studentized
residuals, sorted by magnitude, are:

ID y X fitted .resid .std.resid
10| 4.5 2.2678 | 0.4578 | 4.042 | 3.5886
2 | —1.964 | 1.8287 |0.4309|-2.395| -1.992
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ID y X fitted .resid .std.resid
11 1.7416 | -2.0087 | 0.1958 | 1.546 | 1.3169
17|-1.1355| 0.3241 |0.3388|-1.474| -1.11

9 [-0.8263|-0.2376 (0.3043 | -1.131 | —0.8502

It seems that participant 10-the top right point-has a high standardized
residual of 3.59.

20.1.2 Influential Observations/Cases

Influential observations are data points that have a disproportionate
impact on the estimates of a statistical model-such as regression coeffi-
cients (8). In other words, these cases can significantly change the results
of an analysis simply by being included.

For example, in regression analysis, most observations contribute mod-
estly to the overall fit of the model. However, an influential case might
pull the regression line toward itself, altering slope estimates and pre-
dicted values. This influence is not just about being an outlier in terms
of the outcome variable. Instead, it depends on the combination of
predictor values and their leverage in the model.

Researchers typically assess influence using diagnostic measures such as
Cook’s Distance of DFBETAs.

1. Cook’s Distance: Evaluates how much the regression coefficients
would change if a particular observation were removed. Higher values
indicate more influence on the regression coefficients. Often times a
distance > 4 is concerning. Cook’s distance is calculated using:

2
€; hi;

D, =
po? (1_hiz’)2

(2

Where:

® pis the number of predictors (including the intercept if counted),
. Bj(i) denotes the coefficient with observation/case i deleted
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Luckily for us, most statistical software will provide these for you. For
example, the augment () function from the broom package in r. Here are
five highest Cook’s distance values for our data:

ID y X fitted .cooksd
10| 4.5 2.2678 |0.4578 | 3.03966
2 |-1.964| 1.8287 |0.4309|0.57936
11 1.742 | -2.0087 | 0.1958 | 0.30844
17| -1.136| 0.3241 |0.3388 | 0.03622
12| 1.402 |-0.5243]0.2868 | 0.02452

Again, Cook’s distance for observation 10 appears problematic.

2. DFBETASs: assess the influence of individual observations on the esti-
mated regression coefficients. For each observation and each coefficient
in the model, DFBETA measures the difference between the coefficient
estimated with all data and the coefficient estimated when that obser-
vation is removed. Observations that significantly alter coefficients when
included can distort the model’s interpretation and predictions.

A large absolute DFBETA value indicates that the observation has a
strong influence on that particular coefficient. There are some go to
rules of thumb for interpreting DFBETAs. For example, some consider
IDFBETA| > \/iﬁ (where n = number of observations) may be considered
influential. Others consider values greater than absolute 1 concerning.

Again, like Cook’s distance, most statistical software packages will pro-
vide these (or give the option to provide these). The following is from the
dfbeta() function from the stats package in r. We will get one column
for each coefficient (here, 2: one for the intercept and one for z). Here
are some the higher DFBETAs for our data:

ID X.Intercept. X

10| 0.29752 0.71022
2| -0.15472 | -0.29783
1 0.10478 |-0.22155
17| —0.07805 |-0.02663
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ID X.Intercept. X
9 —-0.0597 0.01493

Oh observation 10! What will we do with you. All diagnostics are leading
towards removing this observation from the data. A recommended
practice is to provide the results for two regression analyses: one with
and one without the influential cases. Perhaps the results won't be that
different after all.

20.2 Assumptions

To ensure the validity of a multiple regression model, several key
assumptions must be met. First, the variables should an appropriate
types. Predictors can be continuous or binary categorical. Additionally,
categorical predictors with more than two categories must be dummy
coded. Furthermore, the dependent variable (DV) should be continuous
and unbounded, as ceiling or floor effects can restrict variability.

Second, predictors must exhibit non-zero variance. If all participants
score identically on a predictor, it cannot explain any variation in the DV.

Third, there should be no perfect multicollinearity among predictors.
While some correlation between predictors is acceptable, extreme mul-
ticollinearity can distort results. This can be assessed using the Variance
Inflation Factor (VIF), calculated as VIF = ﬁ. A VIF greater than 10
indicates severe multicollinearity, while values above 5 warrant caution.
Your statistical software can provide VIFs for each predictor. In our
example there are no VIFs; with only one predictor, there's not other

predictor for it to be correlated with!

Fourth, omitted variable bias should be considered. You should ensure
you are not excluding an important predictor that may influence the DV.
Having good theory-derived hypotheses can help prevent this.

Fifth, the assumption of homoscedasticity requires that residual variance
remains consistent across all predictor values; systematic increases or
decreases indicate heteroscedasticity. An easy way to assess this is to
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plot residuals and fitted values. The residuals should be consistently
dispersed across all levels of fitted values.
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Our regression has few observations, so it is harder to assess het-
eroscedasticity. Most points look good, except observation 10.

Sixth, error terms should be independent, meaning residuals are uncor-
related.

Seventh, residuals should follow a normal distribution, which can be
checked using the Shapiro-Wilk test or visually with a QQ plot.

Finally, the relationship between predictors and the DV should be linear.
This was discussed in a previous chapter. If non-linear patterns exist,
transformations such as 2% or 2 may be necessary.

20.3 Types of Regression

In this last section, we will cover various types of entry methods for
regression. When dealing with multiple variables, sometimes researchers
do not want to put all of the variables in the model at once. Instead,
they may wish to put in subsets in sequentially. The term block is often
used to describe predictors or a set of predictors that get put into the
model. Why would one want to add blocks sequentially in regression?
One could add blocks of predictors to determine changes in R? and sr2.
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For example, enter one block, get an R? and then add a second to assess
the changes in R?. Any significant increase will highlight that the second
block of variables are seemingly important predictors, as they explain
more variance in the outcome. The following are some common entry
methods.

20.3.1 Hierarchical

Hierarchical regression is theory-driven and widely used in psycholog-
ical research. Predictors are entered in blocks, based on conceptual
importance or prior evidence. Known predictors are typically entered
first, followed by additional variables to assess their incremental contri-
bution to the regression model (i.e., do they explain more variance).
This approach allows researchers to test hypotheses about whether new
predictors improve model fit after controlling for established variables.

For example, suppose we aim to predict anxiety symptoms. In Block 1,
we enter demographic variables (age, sex). In Block 2, we add depres-
sive symptoms to determine whether they explain additional variance in
anxiety beyond demographics.

Hierarchical regression results can often be nicely summarized in tables,
with each block having it's own section. For example, the following is
output from the apa.reg.table() function from the apaTables package.

Regression results using Anxiery as the criterion

b s
Predictor b 95% CI sr? 95% CI Fit Difference
[LL, UL] [LL, UL]
(Intercept) 56.11%*  [47.57, 64.65]
SexMale 3.04 [-0.86, 6.95] .02 [-.03,.08]
Age -0.18 [-0.38, 0.02] .03 [-.03,.10]

RE =.056
95% CI[.00,.15]

(Intercept) 29.21%* [18.48,39.94]

SexMale 4.30% [1.03,7.58] .05 [-.02,.11]
Age -0.14 [-0.31, 0.03] .02 [-.02,.06]
Depression 1.68%*%  [1.18,2.18] .30 [.15, .44]

R? = 353%%  AR? = 297+
95% CI[.19,.46] 95% CI[.15, .44]

Note. A significant b-weight indicates the semi-partial correlation is also significant. 4 represents unstandardized regression weights.
s7” represents the semi-partial correlation squared. LL and UL indicate the lower and upper limits of a confidence interval, respectively.
* indicates p <.05. *¥ indicates p < .01.

Figure 18: Results table for hierarchical regression.
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20.3.2 Forced Entry

In forced entry, all predictors are entered at once, assuming theoretical
justification for their inclusion. Like all multiple regressions, each coeffi-
cient is interpreted in the context of all other predictors. This method is
straightforward and appropriate when all predictors are equally impor-
tant. However, it does not allow testing of incremental validity.

20.3.3 Stepwise Regression

Stepwise methods rely on statistical criteria rather than theory. Predic-
tors are added or removed based on a priori metrics such as hitting a
specific p-values or AIC threshold. There are specific variants of stepise
methods.

First is forward Selection. In this method, the regression model starts
with no predictors and first adds the most significant one (i.e., lowest p-
value). It then continues to test all predictors and add the most significant
one. This continues until improvement stops (i.e., no more predictors
reach statistical significance). A second method is backward Elimination.
In this methods, the regression model starts with all all predictors and re-
moves the least significant one iteratively. A last method is bidirectional
selection, which combines forward and backward methods of stepwise
regression.

Stepwise regression is generally discouraged in psychological research.
Specifically, because it iteratively tests numerous models to find the
‘most significant’ one, it often inflates type 1 error rates. Furthermore,
it generally discounts predetermine theory that should specify which
variables are included. Remember, variables in a regression model are
always interpreted within the context of the full model. Thus, if theory
specifies that z should be in a model, the other predictors results will
change with z in the model versus without it (unless z is orthogonal to
the other predictors and the outcome variable).
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20.3.4 All-Subsets Regression

This method evaluates every possible combination of predictors to
identify the best-fitting model. While comprehensive, it is rarely used
in practice. Again, using you sample data to iterative identify the ‘best’
model increase type 1 error rates and likely goes against any grounded
theory.

For example, if a research has eight predictors, there will be 255 regres-
sion models: 8 models with one predictors, 28 with two predictors, 56
with three predictors, 70 with four predictors, 56 with five predictors,
8 with seven predictors, and 1 with eight predictors. You statistical
software would run all possible models and return the one with the best

criteria (e.g., R} ;).

20.4 Conclusion

Regression is a powerful statistical analysis that is capable of answering
numerous research question and testing hypotheses. However, with
great power comes great responsibility. Knowing the assumptions and
approaches to regression will help ensure your analyses are valid.

347



21 Moderation

Psychological phenomenon are complex and multifaceted. That is, there
are many causes and influences on any given psychological process. Even
seemingly simple cognitions, emotions, and behaviors can be difficult to
understand and predict. Thus, developing theories that recognize the
complexity and building subsequent hypotheses to test these theories
is imperative. Moderation is one way to test complex relationships be-
tween multiple variables by uncovering nuanced relationships between
variables. As Lerner et al. (2015) aptly states:

...nature never affects behaviour directly; it always acts in the
context of internal and external environments. Environment never
directly influences behaviour either; it will show variation in its
effects depending on the heredity-related characteristics of the
organism on which it acts.

— Lerner et al., 2015

You may not recognize it, but you have much experience with moder-
ation. Quite simply, a moderation is an interaction. For example, we
may test the efficacy of a new drug versus a placebo on 'happiness’.
We measure scores before taking the drug/placebo, and measure scores
after some time of taking the drug/placebo. In this example we have
two independent variables (time and drug) and one dependent variable
(happiness). An interaction would indicate that the association between
an IV and a DV is dependent on some other IV. That is, the change in
time on happiness depends on whether you got the drug or the placebo.
These figure represent potential interactions. Note that the lines are not
parallel.

348



Example 1 Example 2
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In previous chapters on factorial and mixed ANOVAs you encountered
interactions between qualitative or categorical variables with mutually
exclusive levels. However, regressions are quite flexible in the types
of variables they can include. We can test interactions between differ-
ent types of variables such as categorical X categorical (what we did
in ANOVA), continuous X categorical, and continuous X continuous.
Furthermore, we can test (not unlike ANOVAs), 3-, 4-, or more-way
interactions.

© Knowledge Check

Explain to a classmate what moderation is. Draw a figure to help you
explain.

21.1 Some Assumptions

Moderation has the same assumptions as multiple regression. There is
one, however that deserves special attention: multicollinearity. As you
will learn, moderators/variables in interactions in regression are at risk of
being correlated (i.e., multicollinearity). Thus, measures must be put in
place to counter this. The most implemented method is to mean-center
all continuous predictors. Let’s have a brief tangent prior to continuing.
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© Getting the interaction variable

The interaction variable is not a different variable you measure, per
se. We simply multiply scores on the variables that compose the
interaction.

Consider the following four variables: one outcome y (continuous) and
three predictors x, (continuous), z, (categorical and dummy coded), and
x4 (continuous). | will show the first five participants (out of 100):

ID y x1 x2 x3

1116|5011 79
2 (1869|0102
31171690 | 84
4116|500 (110
5121471 ] 99

We want to test the interaction/moderation between some of the
variables. Let's multiply the variables of interest (let’s say we want an
interaction between z; and z5. We can multiple them together:

ID x1 x3 x1_x3

1150 79 | 3950
2 (69(102(| 7038
3169| 84 | 5796
4 150|110 5500
5 (47| 99 | 4653

If we get the correlation between these three predictors, =1, z3, and
z1,3 (the interaction), we notice that they are quite correlated. Here is
the correlation matrix:

x1 x3 x1 x3
x1 1.000 0.004 0.750
X3 0.004 1.000 0.654
x1 x3 0.750 0.654 1.000
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The correlation between the predictors and the interactions terms are
high; z; and the interaction is r = .750 and z,, and the interaction is r =
.654. There is a way to bypass this multicollinearity, which violates an
assumption of regression models: mean-centering.

Let’s go create two new interaction variables using the data in the table
above. First, let's model the interaction between z; (continuous) and
z, (categorical). To mean center z1, we find the mean and subtract it
from every score. The mean of z1 is 51.58. We can create a new variable
that is mean-centered (z,, may be a good naming convention, where ¢
stands for centered). Each persons score would be on this new variable
would be:

Person 1: 50 — 51.58 = —1.58 Person 2: 69 — 51.58 = 17.42 ... Person 5:
47 —51.58 = —4.58

This new variable is what is used in our new regression analyses (as you
will learn, in addition to the initial variables). We multiply that with z,.
Because z, is categorical, not continuous, we do not mean center that
variable. The interaction variable between z; and z, can be found in the
following table:

ID x1 x2 x1c xlc_x2

11501 1|-1.58]| —-1.58
2 (69| 0|17.42 0
3169|0|17.42 0
4 150| 0 [-1.58 0
5(47|1|-4.58| -4.58

To model an interaction between z; and x5, two continuous variables, we
must mean center both. The following show the mean centered scores
and their interaction:

ID x1 x3 xlc x3c x1c_x3c
1[50 79 |-1.58(-19.61| 30.984
2169(102(17.42| 3.39 59.054
3169 84 |17.42|-14.61|—-254.506
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ID x1 x3 xlc x3cC xTc_x3c
4 150(110|-1.58| 11.39 | —-17.996
5147 99 | -4.58| 0.39 -1.786

Recall above the high correlations between the uncentered predictors
and the interaction. Let's calculate the correlation between the mean-
centered variables and that interaction:

x1lc  x3c xlc x3c
x1lc 1.000 0.004 -0.068
X3¢ 0.004 1.000 0.093
xlc x3c -0.068 0.093 1.000

The correlation are extremely small. The correlation between the mean-
centered predictors and the interactions terms are low; z;, and the
interaction is r = —.068 and z5. and the interaction is r = .093. Multi-
collinearity has been avoided!

Now you know how interaction variables are created. Many statistical
software package will automatically create this for you. However, here
are some major points to remember:

1. You only mean-center predictors; the outcome is not centered

2. You only mean-center predictors that are continuous

3. Categorical predictors, while not mean-centered, must be dummy
coded

4. You must include the both the mean-centered predictor and the
interaction in your analysis, even if you only care about the interaction.
For example, you must include z;,. and z,, if you will be investigating

their interaction, z;,,;..

21.2 RUNNNN! Get to the protein!

We are working with a new health company and been tasked with testing
the association between average daily protein intake (DPI; measured
in grams) and lean muscle mass (LMM; the amount of muscle tissue
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measured in pounds) in a group of individuals. The company is also
interested in the association between LMM and gym activity (gym goers
versus gym abstainers). They believe that protein will be most helpful in
creating LMM for those who go the gym.

21.3 Continuous X Categorial Interactions

21.3.1 1. Generating hypotheses

Our conceptual hypotheses can be phrased as:

H1: Individuals who have a higher daily protein intake (DPI) will have
more lean muscle mass (LMM) H2: Individuals who are gym goers will
have more LMM compared to those who do not H3: Gym activity will
moderate the relationship between DPl and LMM. Specifically, the rela-
tionship between gym activity and LMM will be stronger for those who
have higher DPI

We will use two-sided tests for each regression coefficient. Importantly,
interactions are simply regression coefficients. Thus, we can model our
hypotheses like we did in previous regression analysis using either our
coefficients (sr?):

Hy:all=0
and

H, :allg#0
OR our entire model (R?):

Hy,:R*=0

H,:R*>>0

For our protein research, we have three regression coefficients (four
including the intercept):

* Bapi: protein intake
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® Byym: 9ym activity
e 3...: interaction between protein intake and gym activity

inx*

Our resulting model will be:
Yi = by + bgpi (T51) + bgym (Ti2) + b (T3;) + €
Where:

e y, is person i's lean muscle mass

® 1., is person i's daily protein intake

® 1, is person i's gym activity

® .. is person i's score on the interaction variable (remember, the
product z; and z, which are mean centered, if continuous)

21.3.2 2. Designing a study

Participants: Participants were recruited through local advertisements
and social media platforms. Eligible participants were adults (18+) resid-
ing in the Corner Brook region. A total of 100 participants were included:
50 regular gym-goers (attending the gym at least three times per week
for the past six months) and 50 non-gym-goers (no structured exercise
routine in the past six months). Recruitment materials and procedures
were approved by the Grenfell Campus Ethics Review Board.

Measures: Daily Protein Intake (DPI): Participants reported their average
daily protein consumption (grams per day) using a validated dietary
recall questionnaire.

Lean Muscle Mass (LMM): Lean muscle mass was assessed using bio-
electrical impedance analysis (BIA), providing an estimate in kilograms.

Gym Activity: A binary variable indicated gym status (1 = gym-goer, 0 =
non-gym-goer).

Procedure: Participants provided informed consent and completed the
dietary recall questionnaire. Lean muscle mass was measured during
an in-person session using standardized BIA procedures. Demographic
information (age, sex) was also collected for descriptive purposes.
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Design and Analysis: The study employed a cross-sectional design. A
multiple regression analysis was conducted to examine whether Daily
Protein Intake (continuous) and Gym Activity (binary) predicted Lean
Muscle Mass. The regression model included DPI and gym activity
as predictors, with LMM as the outcome variable. Interaction effects
between DPI and gym activity were explored to determine whether the
relationship between protein intake and lean muscle mass differed by
gym status.

Assumptions of linear regression (normality, homoscedasticity, multi-
collinearity) were checked prior to analysis. Effect sizes and 95% confi-
dence intervals were reported. Statistical significance was set at a = .05.

All recruitment materials and procedures were approved by the Grenfell
Campus Ethics Review Board.

21.3.3 3. Collecting data

You follow through with your research plan and get the following data
(only the first 10 participants are shown to show the structure of the
data):

ID Gym DPlI LMM
67 |No Gym | 22 | 80
291 Gym | 23| 93
421 Gym |28 | 74
74| No Gym | 30 [ 65
96| No Gym | 33 | 59

21.3.4 4. Analyzing data

Data is analyzed analogously to multiple regression. We will analyze are
variables in a single block. However, one may want to analyze main
effects in one block followed by the interactions in a second block.

Prior to our analysis, we must center our continuous independent
variable: DPl. We would model an interaction by creating a new vari-
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able (z3=interaction) that is the product of the other variables
Centeredp PI, x5 = gym) - ©5 = (x1,)(z5)

Let’s run our model with centered interaction terms:

Observations 100
Dependent variable LMM
Type OLS linear regression

F(3,96) | 166.84
R2 0.84
Adj.Rz| 0.83

(xlc

Est.| 2.5% [97.5% | tval. p| VIF
(Intercept) 64.27 ) 59.32| 69.21|25.80|0.00| NA
DPI_Centered -0.06|-0.31| 0.20|-0.4410.66|2.25
GymGym 70.27 | 63.28 | 77.27 1 19.95]0.00|1.00

DPI_Centered:GymGym | 1.31( 0.97| 1.66| 7.57|0.00|2.24

Standard errors: OLS

Let’s work out the regression equations using this model:
No Gym (z, = 0)
Yimm = 64.27 — 0.06(z;1.) + 70.27(z;5) + 1.31(z1.) (252) + €
Yimm = 64.27 — 0.06(x;;,.) + 70.27(0) + 1.33(x,1.)(0) + ¢,
Yimm = 04.27 —0.06(x;;,.) + €,
Gym (z, = 1)
Yimm = 64.27 — 0.06(z;1.) + 70.27(z;5) + 1.31(z;1.) (232) + €
Yimm = 064.27 —0.06(x,;,.) + 70.27(1) + 1.31(z;,.)(1) + ¢;
Yimm = (64.27 +70.27) — (0.06(x;;.) + 1.31(z;1,)) + €5

356




And a new visualization of data:

Gym NoGym A Gym

200

150

50

-50 -25 0 25 50
DPI_Centered

Notice how the new lines, with each group having their own intercept
and slope seem to fit the data quite well. An interaction allows this.

21.4 Continuous X Continuous Interaction

We often will deal with multiple continuous variables that may interact.
Fortunately, the process is similar. However, we will now need to center
all predictors in the interaction.

Let’s stick to a similar example. Assume we want to determine if LMM
regresses on DPI. But, we think that average hours in the gym per week
will interact with protein intake to predict lean muscle mass. So, our
previous categorical predictor of being a gym goer versus not is now
a continuous predictor of average hours in the gym per week. So, we
reach out to people and ask to now consider the average gym hours
per week.

Our specific hypotheses are as follow:

21.4.1 1. Generating hypotheses
1. DPI will predict LMM
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e H1:8,#0
2. Average gym hours will predict LMM
e H2:5,#+0

3. There will be an interaction between DPl and gym hours on LMM.
Specifically, the relationship between DPI and LMM will be stronger
for those who average more gym hours per week.

e H3:55#0

21.4.2 2. Designing a study

We conduct a study almost identical to the previous but collect average
gym hours per week versus someone being a gym goer or not.

21.4.3 3. Collecting data

We collect data according to the plan and get the following (only first
10 participants shown to demonstrate the structure of the data):

ID DPI Gym LMM

31127 | 5 198
38129 3 165
24 36 | 4 183

1139 5 192
39139 | 4 157

21.4.4 4. Analyzing data

We mean-centered both DPI and average gym time to create the inter-
action term. Our analysis results in the following:

Observations 50
Dependent variable LMM
Type OLS linear regression
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F(3,46) | 67.304
R2 0.814
Adj. R2| 0.802

Est. 2.5% | 97.5% t val. VIF
(Intercept) 256.624 | 246.044 | 267.204 | 48.824 NA
DPIL C 2.747 1.921 3.573| 6.694 1.011
Gym_C 31.734| 26.138| 37.330|11.414 1.037
DPI_C:Gym_C 0.700 0.218 1.181 | 2.927 1.047
Standard errors:
OLS

Or, as another output from the apaTables() package inr.

Regression results using LMM as the criterion

b P sr?
Predictor b 95% CI sr? 95%CI Fit
[LL, UL] [LL, UL]
(Intercept)  256.62** [246.04, 267.20]
DPI Centered 2.75%*%  [1.92,3.57] <.001 .18 [.06,.30]
Gym Hours Centered 31.73** [26.14, 37.33] <001 .53 [.33,.72]
DPI Centered X Gym Centered 0.70**  [0.22,1.18] .005 .03 [-.01,.08]

R? = 814%*
95% CI[.69,.86]

Note. A significant b-weight indicates the semi-partial correlation is also significant. b represents unstandardized regression weights.
sr? represents the semi-partial correlation squared. LL and UL indicate the lower and upper limits of a confidence interval, respectively.
* indicates p < .05. ** indicates p <.01.

Figure 19: apaTables() output.

Remember, the intercept here is for when all other variables are 0. We
have centered our variables, so 0 carries a specific meaning; a score of
0 on a mean-centered variable is equal to the mean. So, the intercept
in these results reflect the expected LMM score for an individual with an
average DPIl and Gym hours. We could expect someone who consumes
the mean amount of protein and who goes to the gym an average
amount of time to have 256.62lbs of lean muscle mass.

Let’s visualize the new interaction.
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Here we can see that the relationships between DPl and LMM is less
strong for those who do not go to the gym often (i.e., —1SD). However,
as gym time increase, the strength of the relationship increases. In other
words, the slope of the lines increases when we move from —1SD, to
0SD, to +1SD. A formal simple slopes analysis can tell us the exact slope
for these lines.

21.5 Simple Slopes

Simple slopes analysis tests whether the slope (coefficient) of one
predictor (i.e., one IV) differs from 0 at given levels or values of the
moderator (i.e., another IV). Although we can you any level of value on
the moderator, the typically convention if to test at =1SD, 0, and +1SD
on the moderator. Thus, if a variable has a mean of 20 and SD of 10,
then our simple slopes analysis will test if the slope for the IV and DV is
statistically significant for the values 10, 20, and 30 on the moderator.

These analyses can be used to provide additional information about a
potential interaction. Let’s use the data from our last example and run a
simple slopes analysis.

SIMPLE SLOPES ANALYSIS
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Slope of DPI when Gym = 2.71578 (- 1 SD):

As is seen from the output, we are given a separate analysis for each
value of the simple slopes analysis. In this specific example, the relation-
ship between DPl and LMM was statistically significant at all tested levels
(-1SD, mean, and +1SD) of gym hours.

21.5.1 5. Write your results/conclusions

Let’s write up the results of this last model that used two continuous
predictors and the interaction.

We regressed individual’s lean muscle mass (LMM) onto their daily
protein intake (DPI). Additionally, we believed that average gym hours
per week would moderate this relationship (i.e., an interaction). The
results suggest that DPl was a statistically significant predictor and
accounted for 18% of the variance in LMM, b= 2.75,p < .001, sr2 =
.18,95% C1I[.06,.30]. Gym hours was a statistically significant predictor
of and accounted for an addition 53% of the variance in LMM,
b=31.73,p < .001, sr? = .53,95% C1[.33,.72]. Finally, the interaction be-
tween DPI and Gym hours was statistically significant and accounted
for an addition 3% of the variance in LMM, b =0.70,p = .01, 572 =
03,95% CI[—.01,.08].
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21.6 Conclusion

Moderation is a powerful tool to model the relationships between vari-
ables and how they may depend on a different variable—-a moderator. Up
next is mediation, where we will formally draw on using separate blocks
in regression analysis.
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22 Mediation

Mediation is a commonly implemented analysis. You already have a won-
derful background that can easily be applied to mediation analysis by
being familiar with multiple regression. Quite simply, we are seeking to
understand whether the association between two variables is mediated
by a third variable. That is, mediation can help us understand whether
the association between z; and y is only indirectly through z,. We can
visualize this as:

Ty — Tyg — Y

22.1 A Quick Caveat

Much mediation research seeks to answer research questions about
causality-and sometimes frames them that way. That is, one thing
(r,) causes changes in another thing (x,), which causes changes in a
third thing (y). However, running a mediation analysis is no different
than running a multiple regression. Causality requires the appropriate
research design; mediation cannot achieve this on its own. There is an
abundance of literature discussing the complexities of mediation and
causality (Pearl, 2014, Zhao et al. (2010)).

Despite this, mediation is useful for explain mechanisms of association.
We will use the famous (maybe infamous) steps by Baron & Kenny (1986),
which are often used (and often misinterpreted).
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22.2 Mediation Steps

We will focus on basic mediation where there is:

¢ A predictor ()
e A mediator (m)
e An outcome/criterion (y)

We believe that x is related to y THROUGH m

T—=m—y

There are three major steps to our mediation approach.

22.2.1 Step 1: Is the predictor associated with the criterion?

We first run a regression model with y regressed on x

Y =b, +biz; +e

Observations 100
Dependent variable y
Type OLS linear regression

F(1,98) | 4.67
R2 0.05
Adj. Rz [0.04

Est.| 2.5% [ 97.5% | tval. P
(Intercept) 44.75128.38| 61.12| 5.42|0.00
X 0.17| 0.01| 0.33]| 2.16|0.03
Standard errors: OLS

This tells use that z is a statistically significant predictor of y. Indeed,
5% of variation in y is accounted for by z. This is analogous to simple
regression.

364



22.2.2 Step 2: Is the predictor associated with the mediator?

Second, we run a new regression model with m regressed on z. Notice
how the coefficient is b, because b; was used in step 1. These are
different coefficients and based on the results of the analyses. The results
of this step are:

m; = b, +by(z;) +e;

Observations 100
Dependent variable m
Type OLS linear regression

F(1,98) [ 22.04
R2 0.18
Adj.Rz2| 0.18

Est.| 2.5% [ 97.5% | tval. P
(Intercept) 31.44(14.83| 48.05| 3.76|0.00
X 0.38| 0.22| 0.55(4.70]0.00
Standard errors: OLS

This tells use that z is a statistically significant predictor of m. Indeed,
18% of the variance in m is accounted for by z. This is also analogous to
simple regression.

22.2.3 Step 3: Is the predictor still associated with the criterion
after the mediator is included?

Our last step is slightly more complicated. We will run a regression model
with:

Y; = b, + b3(w;) +by(m;) +e;

Please note the coefficients above are different from steps 1 and 2
because they will be different when all three variables are in the model.
The results of this model are:
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Observations

100

Dependent variable y

Type

OLS linear regression

F(2,97)15.83

R2 0.25

Adj. Rz| 0.23

Est.| 2.5% [97.5% | t val. P
(Intercept) 30.55| 14.90| 46.19| 3.87|0.00
X 0.00|-0.16| 0.16| 0.01]0.99
m 0.45| 0.28| 0.63( 5.08]0.00
Standard errors: OLS

From these results we can understand that although = was a statistically
significant predictor or y in step 1, it is no longer statistically significant
when m is included in the model. And since x predicts m, and m predicts
y, it would seem that any association between z and y is through m.

Please note that | have not used causal language.

A basic mediation (as we have done) figure typically includes a few

different subscripts. It will typically look like:

In this figure:

Mediation
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 cis the coefficient from Step 1
e ¢’ ("c prime") is the coefficient from Step 3
» If it becomes 0, m fully mediates the relationship between = and y
» If it gets smaller (vague, | know), m partially mediates the relation-
ship between z and y

22.3 Writing up mediation results

We conducted a mediation analysis to determine the extent to which
the association between x and y is mediated by m (see Figure 1). Means,
SD, and correlations between variables are presented in Table 1.

Table 1

Means, standard deviations, and correlations with confidence intervals

Variable M SD 1 2
1.x 101.36 13.78
2.m 70.38 12.36 A3H*
[.25, .58]
3y 62.42 11.27 21%* S0**

[.02, .39] [.33, .63]

Note. M and SD are used to represent mean and standard deviation, respectively.
Values in square brackets indicate the 95% confidence interval for each correlation.
The confidence interval is a plausible range of population correlations that could
have caused the sample correlation (Cumming, 2014).

* indicates p < .05. ** indicates p < .01.

Figure 20: apaTables() output.

We used Baron and Kenny's recommended steps to determine a
potential mediation. In step 1, we used x as a predictor of y. Here,
x was a statistically significant predictor of y, b= .17,p = .003, sr% =
.045,95%C11.00, .015]. Thus, x accounted for 4.5% of the unique variance

iny.
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Second, we ran a separate regression model to determine if x was a
suitable predictor of m. The results suggest that x is a statistically signif-
icant predictor of m, b = .38,p < .001, sr? = .18,95%CI][.06, .31].

Third, and subsequently, we ran a second block on our first regres-
sion model, adding m as a predictor of y. The results indicate that
m was a statistically significant predictor of y, b = .45,p < .001, 572 =
20,95%C1].06, .34]. Importantly, x was no longer a significant predic-
tor of y after m was included in the model, b < .00,p = .99, sr? =
.00, 95%CI[—.00,.00]. The full model of x and m predicting y accounted
for 24.6% of the variance iny, R? = .246. Thus, m appears to fully mediate
the association between x and y (see Figure 1 and Table 2).

Mediation

Table 2

Regression results using y as the criterion

b beta sr?
Predictor b 95% CI beta 95% CI sr? 95% CI r Fit Difference
[LL, UL] [LL, UL] [LL, UL]
(Intercept) 44.75%* [28.38, 61.12]
X 0.17* [0.01, 0.33] 0.21 [0.02,0.41] .05 [.00, .15] 21%*

R = .045*
95% CI[.00,.15]
(Intercept) ~ 30.55%*  [14.90, 46.19]
x 000 [-0.160.16  0.00 [60'1199]’ 00 [-00,.00] 21%

m 0.45%*  [0.28, 0.63] 0.50  [0.30,0.69] .20  [.06,.34]  .50%*
R? =246%* AR? = .201%*
95% CI[.10,37] 95% CI[.06, .34]

Note. A significant b-weight indicates the beta-weight and semi-partial correlation are also significant. b represents unstandardized
regression weights. beta indicates the standardized regression weights. sr? represents the semi-partial correlation squared. r represents
the zero-order correlation. LL and UL indicate the lower and upper limits of a confidence interval, respectively.

* indicates p < .05. ** indicates p < .01.
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Figure 21: apaTables() output.

22.4 Conclusion

Mediation is an important tool to add to your statistical toolbox. It is
commonly used and allows us to understand whether the association
between two variables is mediated by a third variable. Using direct and
indirect effects can help us test more complex psychological theories.
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23 Chi-square

This chapter will cover the chi-square test, a statistical method used to
examine the relationship between categorical variables. Unlike regres-
sion (and ANOVA), which focuses on continuous dependent variables,
the chi-square test assesses whether there is an association between two
categorical variables. But why do researchers need to examine associa-
tions between categorical variables?

Understanding relationships between categorical variables is essential
in many fields of research. Real-world behaviors, traits, and classifica-
tions are often categorical—such as gender, education level, voting
preferences, or disease status. The chi-square test allows researchers to
determine whether observed frequencies in different categories differ
significantly from what would be expected under a null distribution (i.e.,
no association). By doing so, we can identify patterns and relationships
that might not be immediately apparent.

In short, it's another tool to add to your statistical toolbox.

© Think about it

Note that the chi-square test can be applying to more than two cate-
gorical variables. However, in this chapter we will primarily involve
examples with two variables.

370



23.1 Some Additional Details

The chi-square test is particularly useful when researchers want to exam-
ine whether two categorical variables are independent or related. For
example, a researcher might investigate whether gender is associated
with voting preference or whether treatment group membership affects
recovery rates.

The general form of the chi-square test statistic is:

where:

* O,; represents the observed frequency for cell ij (actual counts in each
category),

* [,; represents the expected frequency for cell ij (counts that would
occur under the assumption of independence),

e 2 is the chi-square test statistic, which follows a chi-square distrib-

ution.

23.2 Key Assumptions

Like all of our analyses thus far, a chi-square test is valid under the certain
assumptions. Some of which we have already explored:

1. Independence of Observations
Each observation should belong to only one category, and observations
should not be related to one another.

2. Expected Frequency Rule

Expected counts in each category should generally be 5 or more for the
chi-square approximation to be valid. When expected counts are low,
alternative methods (e.g., Fisher’s Exact Test) may be needed.
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3. Large Sample Size

The chi-square test performs best with a sufficiently large sample, as
small sample sizes may produce unreliable results. A typical rule of
thumb is to avoid expected cell counts less than 5 (more to come).

4. Categorical Data
Both variables should be measured at the categorical level (e.g., nominal
or ordinal scales) rather than continuous.

23.3 Contingency Tables and Expected Frequen-
cies

Before conducting a chi-square test, it is important to organize the
data into a contingency table. A contingency table, also known as a
cross-tabulation or crosstab, displays the frequencies of observations of
the two categorical variables. This table allows researchers to compare
observed frequencies with expected frequencies under the assumption
of independence.

A simple contingency table for two categorical variables (e.g., Gender
and Voting Preference) might look like this:

Candidate A Candidate B

(=1 (J=2)
Male (: = 1) 40 60 Row total: 100
Female (: = 2) |50 50 Row total: 100

Column total:
90

Column total:
110

Total sample
size: 200

While a contingency table may only display the actual frequencies in
each cell (block), it is helpful to also write the row, column, and grand
total, like the above table. It is also helpful to think of each row (i) as and
column (j) as having a number. Combining values of row and columns,
we can determine a cell of interest. For example, n;_, ;_,, refers to the
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frequency in row 1, column 1; this is the cell of the table representing
males who voted for candidate A: n = 40.

1 Think about it

What is the cell frequency for the cell in the second row, first column:

n2,1?

Continuing, to determine whether the variables are independent, we
need to calculate the expected frequency for each cell using the formula:

(Row Total;) x (Column Totalj)
B —
“J Grand Total

For example, the expected frequency for Male/Candidate A would be:

100 x 90

FE —
1.1 200

45

The expected frequencies allow us to use row and columns totals to de-
termine what data would look like if there were no association. However,
you could, in theory, choose any values for the expected frequencies that
align with your theory. Regardless, we need to calculate the expected
frequency for each cell in our contingency table. Doing so, we would get
the following. This first table represents the observed frequencies:

Candidate A (j = 1) | Candidate B (j = 2)
Male (: = 1) 40 60
Female (: = 2) [ 50 50

This second table represents the expected frequencies:

Candidate A (j = 1) | Candidate B (j = 2)
Male (: = 1) 45 55
Female (: = 2) | 45 55

You may find it easy to view discrepancies in observed versus expected
frequencies—and to do any potential calculations— by combining both
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tables into one. Here, expected frequencies are in parentheses following
the observed frequencies:

Candidate A (j = 1) | Candidate B (j = 2)
Male (: = 1) 40 (45) 60 (55)
Female (i = 2) | 50 (45) 50 (55)

Comparing these expected frequencies with the observed counts allows
us to determine whether any differences are statistically significant.

The next step is to compute the chi-square test statistic and assess its
significance using the chi-square distribution.

23.4 Chi-square Statistics

After obtaining the observed and expected frequencies, we compute
the chi-square test statistic using the formula:

2
(0;; — Eyy)

=)

For our example, the chi-square test statistic is calculated as follows:

]

40 — 45)2 60 — 55)2 50 — 45)2 50 — 55)2
o (40— 45 (60—557 (50— 457 (50— 5))

X 15 55 15 55

Computing each term:

o (=52 (5 | (5)?* (=)
=5 "5 T T

X

2—§+§+§+§
X =45 75 45 " 55

x> =~ 0.56 + 0.45 + 0.56 + 0.45 = 2.02

Once we calculate the chi-square test statistic, we compare it to the
critical value from the chi-square distribution table, or we compute a p-
value. The degrees of freedom (df) for a chi-square test are calculated as:

374



df = (Number of Rows — 1) x (Number of Columns — 1)

For our example:
df=(2-1)x(2-1)=1

Using a chi-square table or statistical software, we determine the critical
value for our chosen significance level (e.g., a = .05). If our calculated chi-
square statistic exceeds the critical value, we reject the null hypothesis,
suggesting that the association between the variables in unlikely given
a true null hypothesis.

You can find critical chi-square tables online. Additionally, there are
websites that can calculate an exact p-value for a given x? and d f-such
as here. However, most statistical software packages will provide exact
p-values, residuals, and effect sizes.

23.5 Effect Size

It's important to assess the strength of the association between the
variables. One common measure of effect size for chi-square tests is
Cramer’s V. Cramer’s V provides a standardized measure of association
and is calculated as:

_ X?
V= \/n X (min(r — 1,¢ — 1))

Where:

e 2 is the chi-square statistic,

n is the total sample size,

e ris the number of rows in the contingency table,

* cis the number of columns in the contingency table.

For example, for our 2 x 2 table, the effect size can be computed as
follows:
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2.02 2.02
\/ 200 x (1) ~ V 200

There are some bench mark values to help with the interpretation of
Cramer's V:

e Small effect: 0.1 <V < 0.3
¢ Medium effect: 0.3 <V < 0.5
e Large effect: 0.5 <V

In this case, the effect size of V' =.101 suggests a small association
between the variables.

23.6 Post-hoc Analyses: Residuals

Residuals in a chi-square test help us understand the magnitude of
discrepancies between observed and expected frequencies. They are
calculated as:

O' L Eij

Residual = —2
1o

L)

The residuals give us an indication of how much each observed
frequency deviates from its expected frequency in terms of standard
deviations. For each cell, a large residual indicates a large difference
between observed and expected frequencies, which could be important
for identifying patterns in the data.

For our example:
For Male/Candidate A:

40 — 45 -5
= ~ —0.745
/45 6.708

For Male/Candidate B:

60 — 55 5
= ~ 0.674
V65 7.416
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For Female/Candidate A:

50 — 45 5
= ~ 0.745
/45 6.708
For Female/Candidate B:
50 — 55 -5
= ~ —0.674
/55 7.416

These residuals can help us determine which specific categories con-
tribute to the overall chi-square statistic.

Our formal test would result in:

Cell Contents

| Count |
| Expected Values |
| Chi-square contribution |
| Std Residual |

|
| [,11 | [,2]1 | Row Total |
------------- el e
[1,1 | 40 | 60 | 100 |
| 45.000 | 55.000 | |
| 0.556 | 0.455 | |
| -0.745 | 0.674 | |
------------- R R
(2,1 | 50 | 50 | 100 |
| 45.000 | 55.000 | |
| 0.556 | 0.455 | |
| 0.745 | -0.674 | |
------------- el
Column Total | 20 | 110 | 200 |
| | |
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Statistics for All Table Factors

Pearson's Chi-squared test

Chi®2 = 2.0202 d.f. = 1 p= 0.155218

Pearson's Chi-squared test with Yates' continuity correction

Chi”2 = 1.63636 d.f. = 1 p = 0.200825

Minimum expected frequency: 45

and for Cramer’s V:

Two-sided 95% chi-squared confidence interval for the
population
Cramer's V

Sample estimate: 0.100504
Confidence interval:

2.5% 97.5%
0.00000 0.24933

Let’s now explore a full example relevant to the study of psychology.

23.7 Predominantly effective?: Another Example

You want to investigate whether teenagers with different ADHD sub-
types will prefer various forms of treatment. You have reason to believe,
based on a review of the literature, that individuals may prefer psychoso-
cial treatments as opposed to medication treatments; however, results
are mixed (Schatz et al., 2015). You decide to formally investigate the
topic.
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23.8 1. Generating hypotheses

The main null and alternative hypotheses for this chi-square test can be
stated as follows:

* Null Hypothesis (H, : O,; = Eij):
» The observed frequencies are equal to the expected frequencies
» Therapy preference is independent of ADHD sub-type.
» In other words, there is no relationship between ADHD sub-type and
therapy preference.
* Alternative Hypothesis (H, : O,; # Eij):
» The observed frequencies are not equal to the expected frequencies
» Therapy preference is dependent on ADHD sub-type.
» That is, different ADHD sub-types are associated with different
therapy preferences.

Any post-hoc analyses will used standardized residuals > 2 to determine
particularly influential cells.

23.9 2. Designing a study

You and your team plan a research study. The method follows:

Participants: A power analysis using an effect size of ¢ = .2828 (derived
from the literature) was used to determine the needed sample to achieve
a power of 1 — 3 = .8. The results of the power analysis suggested a
required sample size of n = 300.
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© Power Analysis

Power analysis can be completed in R. The pwr.chisq.test() function
from the pwr package is a sound method. It does, however, require
Cohen’s W and not Cramer’s ¢. This is an easy calculated. Per Cohen
(1988), W is:

" (Py; — Ry)?
W= \/; By

Where: R, is the proportion in cell i as indicated by the null hypoth-
esis Hy;, P,; is the proportion in cell i posited by the alternate
hypothesis H 4; m = the number of cells.

A major difference in this and the typical analyses we have been doing
is that these are proportions, not frequencies.

This may seem taxing, particularly because you don’t have propor-
tions. Well, we can approximate W using:

¢
k—1

Where k is the smallest number of rows or columns. So for our power
analysis:

We can then use R to compute our power analysis:

Chi squared power calculation

w = 0.2
N = 298.382
df = 4
sig.level = 0.05
power = 0.8

NOTE: N is the number of observations

Which suggests a sample of of n ~ 298.38, which we would round up

to 300. 380




Participants were recruited from local ADHD support groups and clinical
settings. Flyers and online advertisements were used to reach individ-
uals diagnosed with ADHD. Eligible participants were required to have
a confirmed ADHD diagnosis of one of the three sub-types: Predomi-
nantly Inattentive (Pl), Predominantly Hyperactive-Impulsive (PHI),
or Combined Type (CT). A total of 200 participants were surveyed.

Materials: A structured questionnaire was used to collect self-reported
therapy preferences. Participants selected their preferred treatment
from three options: Cognitive Behavioral Therapy (CBT), Behavioral
Therapy, or Medication

Procedure: Participants completed an online survey that collected de-
mographic information, ADHD sub-type (based on a clinical diagnosis),
and their preferred therapy type. Informed consent was obtained before
participation. The ethics review board at Grenfell Campus reviewed and
approved the study.

23.10 3. Collecting data

The study was completed as described, and a total of 300 participants
provided data. The responses were summarized in the following contin-
gency table:

ADHD Sub-type | CBT | Behavioral Therapy | Medication | Total
PI 50 |30 20 100
PHI 30 |50 70 150
CT 20 |40 40 100
Total 100 (120 130 300
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23.11 4. Analyzing data

A chi-square test of independence was conducted to determine whether
there was a significant relationship between ADHD sub-type and therapy
preference. The results are as follows:

Cell Contents

Total Observations in Table: 350

|
| CBT | BT | Med | Row Total |
------------- Jomeescesces Jeoaeoaznasssomcersncs|oeaasoas00s]
PI | 50 | 30 | 20 | 100 |
| 16.071 | 0.536 | 7.912 | |
| 4.009 | -0.732 | -2.813 | |
------------- [oeeenenecs Jonnasnasnas]eonanoncs|oanaasoanas
PHI | 30 | 50 | 70 | 150 |
| 3.857 | 0.040 | 3.663 | |
| -1.964 | -0.199 | 1.914 | |
------------- ]
CT | 20 | 40 | 40 | 100 |
| 2.571 | 0.952 | 0.220 | |
| -1.604 | 0.976 | 0.469 | |
------------- [oeeeeccsces eoazoazsaso]|soscencance|oemasoazoas]
Column Total | 100 | 120 | 130 | 350 |
------------- [omcesccsccs eonasazsass]soseencccce]|oannzzazans]
Statistics for All Table Factors
Pearson's Chi-squared test
Chi~2 = 35.8226 d.f. = 4 p = 3.14726e-07
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Minimum expected frequency: 28.5714

Two-sided 95% chi-squared confidence interval for the
population
Cramer's V

Sample estimate: 0.226219
Confidence interval:

2.5% 97.5%
0.159234 0.301578

Our overall Chi-square was statistically significant, indicating that the ob-
served data are unlikely given our expected data. We can further explore
which cells seem to be driving our results by inspecting the standardized
residuals. In our results, there are two cells that seem to be particularly
influential: individuals with predominantly inattentive type (Pl) seem to
prefer CBT much more than expected, and prefer medication much less
than expected.

23.12 5. Write your results/conclusions

A chi-square test of independence was conducted to examine the
relationship between ADHD sub-type (Pl, PHI, CT) and therapy type
(CBT, Behavioral Therapy, Medication). The results of the chi-square
test were statistically significant, x?(4) = 35.82, p < .001, V = .226,
95%C1T [.159, .302], indicating that the distribution of therapy types dif-
fers significantly across ADHD sub-types.

To further explore these results, we examined the standardized residu-
als for each cell. The standardized residuals indicated that individuals
with predominantly inattentive type (Pl) were more likely to prefer CBT
(standardized residual = 4.009) and less likely to prefer medication (stan-
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dardized residual = —2.813) than expected. The remaining cells showed
minor deviations from expected frequencies, with standardized residuals
less than 2.

These findings suggest a strong preference for CBT among individuals
with Pl. Further research may be necessary to explore the underlying
factors contributing to these preferences.

23.13 Conclusion

The chi-square test is a powerful tool for analyzing relationships between
categorical variables. By comparing observed and expected frequen-
cies, we can determine whether a meaningful association exists. While
straightforward to compute, the test has key assumptions that must be
met for valid results. Understanding and applying the chi-square test
correctly is an essential skill for researchers working with categorical
data.

23.14 Chi-square in R

| have found that the best function in R for Chi-square is CrossTable()
from the gmodels package. It is comprehensive.

TO calculate Cramer’s V, you can use the cramersv() function from the
confintr package.
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24 Other non-parametric tests

Not all data behave the way we want them to. Real-world data are
messy. People don't always fit neatly on a bell curves. Measurements
might be imprecise or better captured with rankings rather than precise
numbers. And often, especially in psychological and social research, we
want to explore patterns in counts, ranks, or yes/no responses—things
that aren’t continuous or normally distributed. Thus far we have explored
tests primarily used with continuous and normally distributed data. Non-
parametric tests, such as the chi-square, will expand our toolbox and
allow us to answer more research questions and test the associated
hypotheses.

In many research situations we find that our data do not meet the
assumptions required for parametric tests—assumptions like normality,
homogeneity of variance, or interval-level measurement. This is where
nonparametric statistics come in.

Nonparametric methods are a flexible set of statistical tools that make
fewer assumptions about the underlying distributions of the data.
They're particularly useful when working with categorical data, ordinal
data, or small sample sizes, or when the assumptions of normality or
homoscedasticity are clearly violated. In short, nonparametric tests allow
us to analyze data that might otherwise fall outside the scope of tradi-
tional parametric techniques like t-tests and ANOVA.

One of the most widely used nonparametric methods is the chi-square
test, which assesses whether there is a relationship between two cate-
gorical variables. We have covered a full chapter on this test. In this
chapter, we will cover other, less common non-parametric tests. Specif-
ically, we will cover:
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1. The Rank Sum Test (Wilcoxon-Mann-Whitney Test)

Use this when you want to compare two independent groups (e.g.,
treatment vs. control) on an ordinal or skewed continuous variable. Think
of this as the nonparametric sibling of independent samples ¢-test.

2. Wilcoxon’s Matched-Pairs Signed-Ranks Test

Use this when you want to compare two dependent groups (e.g., pre-
and post-treatment) on an ordinal or skewed continuous variable. Think
of this as the nonparametric sibling of repeated-measures t-test.

3. The Kruskal-Wallis Test

A generalization of the Rank Sum Test for comparing three or more
independent groups. Think of this as the nonparametric sibling of one-
way ANOVA.

4. The Friedman Test
Used for repeated-measures or matched-subjects designs involving

ordinal data. Think of this as the nonparametric sibling of repeated-
measures ANOVA.

O Think about it

These tests don't require your data to be normally distributed, but
they do assume that your observations can be ranked and that ranks

are meaningful.

Rather than comparing means, these tests compare distributions of
ranks across groups or conditions. The idea is simple: if the distributions
are similar in multiple groups, ranks should be evenly spread across
groups (e.g., the most depressed person should have equal chance
of being in one group over the other). If not, we'll see systematic
differences in the ranks, which can inform us that one condition may
outperform (or under-perform) the others.
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24.1 Nonparametric # inferior

Because we encounter non-parametric tests less often, it's easy to
assume they are inferior or ‘less’ valid or reliable than parametric tests.
In fact, these tests are robust, flexible, and widely used in real-world
research (including psychology!), where ordinal scales and non-normal
data are common.

24.2 Rank Sum Test

To begin understanding nonparametric tests, we must first understand
the idea of rankings. Data can be ranked in many ways. First, data may
initially be ranked. For example, we know the places individuals finished
in a political race. There was a 1st, 2nd, and 3rd place. Otherwise, we
may manually rank the data. For example, if we know that politician 1
had 3,992 votes, while politician 2 had 3,027 votes, we can assign them
ranks of 1 and 2, respectively. Or, imagine we get students final grades;
we could also assign ranks here:

Student FinalGrade Rank

Erica 77 5
Chelsea 59 3
Nikki 52 2
Steven 51 1
Aaron 63 4

So why assign ranks? Well, recall that sometimes we fail to meet the
assumptions of our parametric tests. In these cases—or when the data are
ranked by nature-you should implement these tests.

Now that we understand ranks, let’s try another example. | want to get
six people together to run a race. Racers will fast (i.e., not eat) 12-hours
before the race. However, an hour before the race, | will give three of
these individuals Gatorade. The the others will get nothing. Consider
only one group of individuals (either Gatorade or nothing): what are the
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possible ranks they can get? Our three runners in the Gatorade group
could get: a) 1st, 2nd, 3rd; b) 1st, 2nd, 4th; c) 1st, 2nd, 5th, etc. In
fact, there are 20 possible combinations of ranks for this group of three
among six runners. Let’s sum their ranks as well (assume Person 1, 2, and
3 are our Gatorade group):

Scenario Person1 Person2 Person3 Sum

1 1 2 3 6
2 1 2 4 7
3 1 2 5 8
4 1 2 6 9
5 1 3 4 8
6 1 3 5 9
7 1 3 6 10
8 1 4 5 10
9 1 4 6 11
10 1 5 6 12
11 2 3 4 9
12 2 3 5 10
13 2 3 6 11
14 2 4 5 11
15 2 4 6 12
16 2 5 6 13
17 3 4 5 12
18 3 4 6 13
19 3 5 6 14
20 4 5 6 15

You may notice that some of the sums of ranks repeat. For example,
obtaining a sum of ranks = 8 occurs two times. It can be helpful to create
a cumulative frequency table to highlight this:

Sum Count Cumulative_Frequency Cumulative_Percentage
6 1 1 5
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Sum Count Cumulative_Frequency Cumulative_Percentage

7 1 2 10
8 2 4 20
9 3 7 35
10 3 10 50
11 3 13 65
12 3 16 80
13 2 18 90
14 1 19 95
15 1 20 100

In this case, if the Gatorade has no impact, than the sum of ranks should
be similar to the group that received nothing. If the Gatorade had an
impact, our three Gatorade drinkers should have a relatively lower sum
of ranks compared to the non-drinkers, indicating they finished quicker
than the non-drinkers. This is the rationale behind the Rank Sum Test.

The Rank Sum Test is like a t-test for ranked data. We can use ranked
data or manually create ranks from other data. In the case of ties, we
take the mean of the ranks. For example, if two people scored the same
and would have been ranks 4 and 5, we would take the mean 4.5.

24.2.1 When to use

There are a a few use cases for the Rank Sum Test.
1. Data violates the assumptions of the independent t-test
2. Super small sample size (Tyler's §4)

3. Data are ordinal

24.3 Cognitive Race

You are part of a lab that is testing the impacts of test instructions
on performance. In this study, participants completed a cognitive task
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designed to resemble a race. Participants were randomly assigned to
either a control group or an experimental group. The control group
was informed that the task was a race and that they would be ranked
based on their performance. In contrast, the experimental group was
explicitly told that the task was not a race and that rankings would not
be emphasized. Despite the framing, all participants completed the task
individually and in isolation. The study aimed to examine how compet-
itive framing influences cognitive performance and perceived pressure.

The results of the study are as follows:

ID Group Rank

Experimental | 2

Experimental | 11

Experimental | 6

Experimental | 1

Experimental | 4

Experimental | 13

Experimental | 12

Experimental | 3

Experimental | 17

Experimental | 9

L IR RN RN B NN K BEEEN BEEEN KN
Olo|vloalalplwln|alo]|e|N|oc(aR[wIN|=

Control 15
Control 7
Control 19
Control 18
Control 14
Control 8
Control 5
Control 20
Control 16
20 Control 10

To complete our rank sum test, we need to calculate a few things. First,
we will need W, which is define as:
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W, = Zrank
And, U, which is defined as:
U=w,— w

Here, U represents the sum of ranks that is adjusted fo the number of
observations in each group. This means that we can compare the U
statistic regardless of sample size. Because we calculate a U for each
group, we select the U value that is smaller.

The sum of ranks, W, for each group is:

Group Sum of Ranks

Control 132
Experimental 78

And, thus, our U values are:

Control Group

10(1 1
gm0
Experimental Group
10(1 1
U="178— w — 923

Recall the table above outlining the cumulative frequencies? We can
easily find in this table the extremely unlikely values. J.K. Wilcox did just
this for various sample sizes, etc. We compare our resulting statistic to
these values.

Using tables like these.

As can be seen from this table, when comparing two groups of n = 10
individuals:
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TABLE 6 Critical values and P-values of U, for the Wilcoxon-Mann-Whitney
test
Note: Because the Wilcoxon-Mann-Whitney test null distribution is discrete, this table provides selected values of the test

statistic U; im bold type and corresponding P-values for a non-directional alternative in italics. Directional P-values are
found by dividing the numbers in italics in half.

n n 0.20 0.10 0.05 0.025 0.01 0.005
10 2 | 170182 19 0.061 20 0.030

3 | 240161 26 0.077 27 0.049 29 0.014 30 0.0070

4 | 300188 33 0.076 35 0.036 36 0.024 38 0.0080 39 0.0040
s | 370165 39 0.099 42 0.040 44 0.019 46 0.0080 47 0.0047
6 | 430181 46 0.093 49 0.042 51 0.023 54 0.0075 55 0.0047
7 | 49 0193 53 0.088 56 0.043 58 0.025 61 0.0097 63 0.0046
8 | 560173 60 0.083 63 0.043 66 0.021 69 0.0085 71 0.0044
o | 62018 66 0.095 70 0.044 73 0.022 77 0.0076 79 0.0041
10 | 68019 73 0.089 80.0.023 84 0.0089 87 0.0039

The critical value for would be greater than greater than 77, with an exact
p-value of p =.043 for U = 77. A formal statistical test in our software
would reveal the same thing.

© Rank Sum Test in R

In R, we can complete a Rank Sum Test using the stats package.
Specifically, the function:

wilcox.test(DV ~ IV, data=your data)

Where:

e DVisyour DV, which can be ranked or unranked (R will rank for you)
¢ |V if your grouping variable
e your_data is replaced with your data.frame name

For us, the results would be:

Wilcoxon rank sum exact test

data: Rank by Group

W =77, p-value = 0.0433

alternative hypothesis: true location shift is not equal to
0
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24.3.1 Rank Sum Test - Write-up

Results

To examine the effect of competitive framing on cognitive performance,
a Wilcoxon rank-sum test (Mann-Whitney U test) was conducted to
compare task performance ranks between participants who received
competitive instructions (control group) and those who received non-
competitive instructions (experimental group). The results revealed a
statistically significant difference in performance ranks between the
two groups, U = 77, p = .043. This suggests that the way the task was
framed—as a race versus not a race—had a measurable impact on how
participants performed. Specifically, participants in the non-competitive
condition tended to perform worse than those in the competitive con-
dition, despite completing the task in isolation. These findings support
the hypothesis that competitive framing can influence cognitive task
outcomes.

24.4 Wilcoxon's Matched-Pairs Signed-Ranks Test

Sometimes we violate the assumptions of parametric tests like the re-
peated measures/paired t-test—such as the assumption of normality. In
these cases, or when dealing with ordinal data, we can turn to nonpara-
metric alternative: the Wilcoxon’s Matched-Pairs Signed-Ranks Test.

This test is used when each participant is measured twice (e.g., before
and after a treatment), and we want to determine if there’s a statistically
significant change in the direction and magnitude of their scores.

24.4.1 Paired Well-being: Pre- and post-COVID

Suppose we are studying how COVID-19 impacted high school students’
mental well-being. We assess the same group of students before the
pandemic and again after restrictions were lifted. Mental well-being
is measured using the Global Assessment of Functioning (GAF) scale,
which was adjusted so that lower numbers reflect better functioning
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and higher numbers reflect worse functioning. We could only recruit 20
people, which was means our sample size is limiting and we have small
statistical power (hypothetical power analysis suggests n = 112). In this
example:

e Independent Variable (IV): Time (Pre-COVID vs. Post-COVID)
e Dependent Variable (DV): Mental well-being (GAF scores)
e Design: Repeated measures (paired observations)

Here are the results:

ID Pre Post

111 3
2| 4 1
3|1 0
4 1 4
51 2 1
6 [ 1 2
7| 2 3
8| 2 3
910 4
10| 3 3
1] 1 1
121 O 6
13| O 4
141 1 4
15] 1 3
16| 2 4
171 2 2
18| 4 4
191 O 3
201 0 4

After inspecting the data visually, we can tell the data are positively
skewed and may not meet the assumptions of the paired samples t-test.
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A Shapiro-Wilks test revealed that our data are non-normally distributed
(all ps < .05).

N

Frequency
o

6

Pre is above x-axis. Postis below x-axis.

The signed rank test is similar to the rank sum test, with some minor
adjustments. In short, the test is completed by:

kWb~

Calculate difference scores for each participant.
Ignore zero differences.

Rank the absolute value of the differences.
Apply the sign of the original difference to the ranks.
Compute the sum of positive ranks and the sum of negative ranks.

The Wilcoxon test statistic, W (or V), is the smaller of these two sums.

Note: some software will just use the value for the positive change

ranks

We can summarize steps 1, 2, 3, and 4 in the following table:

ID Pre Post DiffereAtsoliteDifferersign Rank SignedRank Change

11 1 3 -2 2 -1 7 -7 Increase
2| 4 1 3 3 1 10.5 10.5 Decrease
311 0 1 1 1 3 3 Decrease
411 4 -3 3 -1 [ 10.5| -=10.5 | Increase
5] 2 1 1 1 1 3 3 Decrease
61 1 2 -1 1 -1 3 -3 Increase
7] 2 3 -1 1 -1 3 -3 Increase
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ID Pre Post DiffereAtsoliteDifferersign Rank SignedRank Change

81| 2 3 -1 1 -1 3 -3 Increase
910 4 -4 4 -1 14 -14 Increase
121 O 6 -6 6 -1 16 -16 Increase
13] O 4 -4 4 -1 14 -14 Increase
141 1 4 -3 3 -1 (105 -10.5 Increase
151 1 3 -2 2 -1 7 -7 Increase
16| 2 4 -2 2 -1 7 -7 Increase
191 O 3 -3 3 -1 (105 -10.5 Increase
20 O 4 -4 4 -1 14 -14 Increase

We can then sum the ranks for the positive and negative ranks separately.
Here, we get:

Change Sum

Decrease | 16.5

Increase | 119.5

24.4.2 Critical Value

To determine significance, we can compare our observed W (or V) to
critical values in a Wilcoxon Signed-Ranks Table. For small samples (e.g.,
n = 15), these tables provide exact values. Alternatively, software can
compute exact p-values or use a normal approximation. Looking up our
critical value here, we can see that for a sample size of 20, the p < .05
when V' < 52 (our smallest value is 16.5).
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© Signed Rank Test in R

You can perform the test in R using the same wilcox.test() function
as above, but you need to specify that paired = TRUE. For example:

wilcox.test.(DV ~ IV, data = your data, paired = TRUE,
alternative = "two.sided")

For our data it would result in (and give an exact p-value):

Wilcoxon rank sum test with continuity correction

data: GAF by Time

W = 315, p-value = 0.00157

alternative hypothesis: true location shift is not equal to
0

24.4.3 When to Use

Use Wilcoxon’s Matched-Pairs Signed-Ranks Test when:

1. You have paired samples or repeated measures.
2. The assumption of normality is violated.
3. Your data are ordinal or you prefer a robust nonparametric method.

24.4.4 Signed Rank Test - Write-Up

Results

To examine the effect of time (pre- vs. post-COVID) on adolescent
mental well-being, a Wilcoxon’s Matched-Pairs Signed-Ranks Test was
conducted to compare Global Assessment of Functioning (GAF) scores
before and after the onset of the COVID-19 pandemic. The results
revealed a statistically significant difference in well-being scores across
time points, V =119.5, p = .008. This suggests that students’ mental
well-being changed significantly from pre- to post-COVID. Specifically,
scores were higher after the onset of COVID-19, indicating an worsening
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in functioning. These findings suggest that some students may have
experienced psychological impairments in the face of pandemic-related
changes.

24.5 Kruskal-Wallis Test

There may be research scenarios where we have three or more groups
and want to test differences on some ranked outcome. Here, the Kruskal-
Wallis (KW) test is a suitable method to analyse the data. Conceptually,
this test is similar to our previous non-parametric tests. Let's work
through an example.

24.5.1 Gatorade, Milk, or H20?

You are hired by the Canadian Olympic Committee to test the impacts of
types of drinks prior to competition. They want to know if certain drinks
increase performance during short races. You decide to help them by
conducting a brief study. In this study, you aim to investigate whether
the type of drink consumed prior to a 2km race impacts performance.
You manage to recruit 15 lucky participants. Participants were randomly
assigned to one of three conditions, which required them to drink 500mL
of one of three liquids: Gatorade, milk, or water. After consuming their
assigned beverage, all participants completed the race individually. Per-
formance was measured by finishing place (i.e., rank), with lower ranks
indicating faster times (i.e., first place ran the fastest). You hypothesize
that individuals who drink Gatorade will perform better.

In this scenario, a KW test is suitable. It can be used to determine
whether race ranks differed significantly across the three drink conditions
(i.e., people who drink Gatorade typically rank higher).

In short, the Kruskal-Wallis test is a nonparametric alternative to one-way
ANOVA, used when comparing three or more independent groups.
The test is completed by:

1. Combine all scores from all groups into a single list.
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2. Rank all values from lowest to highest, regardless of group.

Sum the ranks within each group.

4. Compute the Kruskal-Wallis H statistic, which evaluates how different
the group rank sums are from what would be expected under the null
hypothesis.

5. Compare the H statistic to a chi-square distribution with £ — 1 degrees
of freedom (where k is the number of groups).

6. If the result is statistically significant, it suggests that at least one
group differs in median from the others.

w

After collecting data, we assign ranks (steps 1 and 2). We obtain the
following data:

ID Group Place

1 Milk 12
2 Milk 9
3 Milk 14
4 Milk 15
5 Milk 13
6 Water 5
7 Water 1

8 Water 3
9 Water 8

10 Water 7

11| Gatorade | 2

12| Gatorade | 6
13| Gatorade | 4
14 | Gatorade | 10
15| Gatorade | 11

Here we have our ranks. For other contexts, you may need to manually
assign ranks to the data.

For step 3, we will not calculate the sum of ranks for each group.
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Group  Sum
Gatorade | 33
Milk 63
Water 24

Next we calculate the H statistic, which is defined as:

12 kT2
H=—"2 N2t _3N+1
N(N+1);n 3N +1)

(]

Where:

e N is our total sample size;
e n, is the sample size for group i;
e T; is the sum of ranks for group i

So, for our data, the H statistics can be calculated as:

12 332 632 242
_3(15 41
15(16+1)X<5 Tt 5) (15+1)
= 0.047 x (217.8 + 793.8 + 115.2) — 48

= 56.34 — 48
=8.34

Importantly, the H statistics is distributed as a x? with df = k — 1 (kis the
number of groups). Thus, we can compare to a critical x? value, as can be
found on many websites), or calculate an exact p-value using statistical
software. For example, in R:

pchisg(q = 8.34, df = 2, lower.tail = F)
Which results in:

[1] 0.0154523
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O KW Testin R

The KW test can be done using the rstatix package. The
kruskal test() function is similar to our Wilcox function:

kruskal test(DV ~ Group, data=your data)
The results from our example would be:

# A tibble: 1 x 6

Y. n statistic df p method
* <chr> <int> <dbl> <int> <dbl> <chr>
1 Place 15 8.34 2 0.0155 Kruskal-Wallis

24.5.2 KW Post-hoc Analyses

Like an ANOVA, the KW test is an omnibus test. It can tell us whether
there is an overall difference between the groups, but does not let us
know where it is. As a result, we need to conduct post-hoc analyses,
which will compare the rankings of our various groups. This is primarily
done through Dunn'’s Test of Multiple Comparisons.

Dunn’s test provides a z-score for each group comparison. By now,
you have a sound understanding of z-scores and their interpretations,
including what may be considered an unlikely value. We can calculate
Dunn'’s test using the following:

2, =2

1
g;

where:

2, is the resulting z-score for comparison i
e y. is the difference in mean of the sum of the for two groups, W, — W
® g, is the standard error of the differences, which is given by:

NN+ X TEeT (11
Ui\j 2 12N=1) \mn)C

i J

401



Wow. That's a handful. Don’t worry, we will use our statistical software
to calculate our resulting z-scores.

© Dunn Test in R

The rstatix package also has a dunn_test () function. The structure is
the same as we have encountered. | like to adjust using the Bonferroni
correction. Also, setting detailed = T provides some other useful
output.

dunn test(DV ~ IV, data = your data, p.adjust.method =
'bonferroni', detailed = T)

In the following, which is the results from our Gatorade, milk, and
water example, ‘statistic’ is the z-score.

group1 group2 n1 n2 statistic
Place | Gatorade| Milk | 5 | 5| 2.1213 [0.033895(0.10168

Place | Gatorade | Water | 5 | 5 | -0.6364 | 0.524518 1
Place Milk Water | 5 | 5 | -2.7577 | 0.005821 | 0.01746

Here we want to focus on the adjusted p-value, which has the
Bonferroni correction. As we can see, the only pairwise difference
that is unlikely given the null is between the Milk and Water groups.
Specifically, the water group finished faster than the milk group. The
other comparisons were not unexpected under the null.

24.5.3 KW Test - Write-up

Results

The results of the Kruskal-Wallis test suggests that the ranks of the
three groups unexpected given a true null hypothesis, x?(2) = 8.34,p =
.016,n% = .528.

Bonferroni-corrected post-hoc test were conducted to determine addi-
tional group differences. Specifically, post-hoc tests indicate that the
milk group had lower rankings than the water group, z = —2.76,p = .017.
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However, the Gatorade group did not differ from the milk group, z =
—2.12,p = .102, nor the water group, z = —0.636, p > .999.

24.6 Friedman Test

There may be research scenarios where we have three or more re-
peated-measures groups and want to test differences on some ranked
outcome. Here, the Friedman test is a suitable method to analyse
the data. Here, we have the same experimental units (e.g., people)
measured multiple times with some ranked data.

24.6.1 Teaching Methods and Student Outcomes

You're interested in evaluating how different teaching methods affect
students’ performance. You recruit 10 undergraduate students, and each
student receives instruction in three different teaching formats over the
course of three weeks:

1. Traditional Lecture
2. Problem-Solving Workshop
3. Online Learning Module

After each session, students complete a standardized test designed to
assess their understanding.

In short, the Friedman test is a nonparametric alternative to repeated-
measures ANOVA, used when comparing three or more related
(paired) groups. The test is completed by:

1. Organize the data so that each row represents a subject (or matched
set), and each column represents a treatment or condition.

2. Rank the scores across each row (i.e., within each subject) from lowest
to highest. Tied values receive average ranks.

3. Sum the ranks for each treatment condition (i.e., column-wise).

4. Compute the Friedman test statistic (Q or x%), which evaluates
whether the rank sums differ more than expected by chance under
the null hypothesis.
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5. Compare the statistic to a chi-square distribution with (k — 1) degrees
of freedom (where k is the number of conditions).

6. If the result is statistically significant, it suggests that at least one
condition differs in its effect compared to the others.

We obtain the following data:

ID Lecture Score Problem_Score Online_Score

1 14.2 17.8 14.4
2 14.2 21.6 9
3 15.4 20.9 14
4 14.7 16.2 8.1
5 16.9 20.3 17.7
6 16.3 19.7 12.6
7 16.6 16.4 15.6
8 14.8 18.9 8.1
9 18.4 19.4 9.4
10 12.4 18.8 8.7

Unfortunately, due to our small sample size and non-normal data, we
must rank the data. For step 1 and 2, we will rank each row’s (i.e.,
unit/person) data. Consider person 1-their highest score was problem
based, followed by online, followed by lecture. Thus, they would receive
rankings accordingly. Completing this for each row would result in (note
that a rank of 1 indicates a ‘highest’ score).

ID Lecture Score Problem_Score Online_Score

1 14.2 17.8 14.4
2 14.2 21.6 9
3 15.4 20.9 14
4 14.7 16.2 8.1
5 16.9 20.3 17.7
6 16.3 19.7 12.6
7 16.6 16.4 15.6
8 14.8 18.9 8.1
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ID Lecture Score Problem_Score Online_Score

9 18.4 19.4 9.4
10 12.4 18.8 8.7

ID Lecture Score Problem_Score Online_Score
1 3 1

V|0 |IN|[oNfO B~ WIDN
NININI[=INIWINIDN
WIWIWIWIWIN|[WW[W|DN

Y
o
SR RN RN 1 U SN NN IR RN RN

Next we will sum the ranks of each treatment condition. Intuitively, this
makes sense. If one method is superior, then the ranks should be higher
(or lower, depending on how you coded) for that group. In our example,
if Problem-Solving workshops are superior, people’s ranks should be
more ‘1’ than ‘2" or ‘3’. Thus, we we add the sum of ranks, if should be
lower than the other groups.

When we add the sum of ranks for each group, we get:

Teaching_Method Sum

Lecture_Score 21
Online_Score 28
Problem_Score 11

The Q (x%) statistic (with df = k — 1) is defined as:

x%=W2+l) x (Y R?—3N(k+1))

Where:
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e R? = squared sum of ranks for condition i
e N is the number of participants
e K is number of conditions/groups

For our example:

12
2 = % (212 +28%2 +112) — 3(10)(4
=0.1 x 1346 — 120
=14.6

We can then compare this statistic to a critical value table or, more likely,
get the exact p-value from our statistical software. For example:

TABLE B.5 Critical Values for the Friedman Test Statistic, F,

k N a<0.10 «<0.05 a <0.025 « <0.01
3 3 6.000 6.000
4 6.000 6.500 8.000 8.000
5 5.200 6.400 7.600 8.400
6 5.333 7.000 8.333 9.000
7 5.429 7.143 7.714 8.857
8 5.250 6.250 7.750 9.000
9 5.556 6.222 8.000 8.667
10 5.000 7.800 9.600
Il 4.909 6.545 7.818 9.455
12 5.167 6.500 8.000 9.500
13 4.769 6.000 7.538 9.385
14 5.143 6.143 7.429 9.000
5 4.933 6.400 7.600 8.933
4 2 6.000 6.000
3 6.600 7.400 8.200 9.000
4 6.300 7.800 8.400 9.600
5 6.360 7.800 8.760 9.960
6 6.400 7.600 8.800 10.200
7 6.429 7.800 9.000 10.371
8 6.300 7.650 9.000 10.500
9 6.467 7.800 9.133 10.867
10 6.360 7.800 9.120 10.800
) 6.382 7.909 9.327 11.073

In the above image, we would look to k& (number of groups) and n (total
sample size). For us, the critical value at a = .05 is x4 = 6.20.
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© Friedman Test in R

It's similar to our last tests—shocker! We would use the rstatix
package and the friedman_test() function. The major difference is we
need to specify our ID variable. We should have a column specifying
the repeated treatment/group, a column for outcome, and a column
for ID/participant specifier. Our function is specified as:

friedman test(DV ~ IV | ID, data = your data)

Alternatively, you could specify three columns, each representing the
DV, IV, and ID for participants. For example:

friedman.test(your datas$DV, your data$IV, your data$ID)
Which, for our example, would result in:

# A tibble: 1 x 6

Y. n statistic df p method
* <chr> <int> <dbl> <dbl> <dbl> <chr>
1 Test Score 10 14.6 2 0.000676 Friedman test

24.6.2 Friedman Test - Effect Size

The typical effect size for the Friedman test is Kendall's W, which is
defined as:

X}

Y NE-T)

Kendall's W has possible values of 0-1, with higher values indicating a
higher effect size. For our data, the effect size is:

14.6

V=16-1

W =.73
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24.6.3 Friedman Post-hoc

Much like our KW test, we will need to conduct post-hoc comparisons
to determine where the group differences lie. We can do this using
Bonferroni-adjusted signed rank tests.

# A tibble: 3 x 8

Y. groupl group2 nl n2 statistic
p p.adj

<chr> <chr> <chr> <int> <int> <dbl>
<dbl> <dbl>
1 Test Score Lecture Score Online Score 10 10 52
0.014 0.043
2 Test Score Lecture Score Problem Score 10 10 1
0.004 0.012
3 Test Score Online Score Problem Score 10 10 0
0.002 0.006

24.6.4 Friedman - Write-up

We conducted a Friedman test to determine whether tests scores were
associated with teaching method. The results suggest that test score
ranking were statistically significantly associated with teaching method,
X2 = 14.6,p < .001, W = .73.

Post-hoc analysis were conducted using Bonferroni-adjusted signed
rank tests. These results suggest that, first, students scored significantly
higher following the problem-solving method compared to the lecture
method, V =1, Dagy = -012. Second, the problem-solving method also
significantly outperformed the online method, V' =0, p,; = .006. Last,
scores following the lecture method were significantly higher than those
following the online method, V' = 52,p, ;; = .043.

Taken together, these results suggest that all three teaching methods
yielded significantly different student outcomes, with the problem-solv-
ing approach consistently associated with better performance.
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24.7 Conclusion

Non-parametric tests are great options for data that violates assump-
tions of the more common parametric methods. These tools will help
you answer important research questions when the data requires. Keep
in mind that these tests are not inferior and, instead, have appropriate
use cases—just like t-tests, ANOVAS, and regression.

24.8 Practice Questions

1. A researcher wants to compare three independent groups using
ordinal data. Which nonparametric test should they use?

2. You conduct a Friedman test on students’ scores across three differ-
ent learning conditions and obtain a significant result. What post hoc
test would be appropriate, and why?

3. What is the primary assumption difference between the Mann-Whit-
ney U test and the Wilcoxon signed-rank test?

4. In the context of the Kruskal-Wallis test, why do we apply a tie
correction to the standard error formula in post hoc tests?

5. Suppose you conduct multiple pairwise comparisons after a Friedman
test. What correction method can you use to control for Type | error?

6. You find that the Wilcoxon signed-rank test statistic (V) = 0. What
does this imply about your data?

7. Describe one situation where you would use the sign test instead of
the Wilcoxon signed-rank test.

8. What are the null and alternative hypotheses for a Kruskal-Wallis
test?
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24.9 Answers

1. The Kruskal-Wallis test is appropriate for comparing three or more
independent groups using ordinal data.

2. The Dunn-Bonferroni test is appropriate for pairwise comparisons
following a significant Friedman test because it controls for Type |
error in multiple comparisons using ranked data.

3. The Mann-Whitney U test compares independent samples, while the
Wilcoxon signed-rank test is for paired or related samples.

4. A tie correction is applied because tied ranks reduce the variability
in the rank distribution, which affects the accuracy of the standard
error and p-value.

5. The Bonferroni correction (or Holm-Bonferroni) is commonly used to
adjust p-values when conducting multiple pairwise comparisons.

6. A (V) value of 0 suggests that all participants scored higher (or
lower) in one condition than the other, indicating a strong direc-
tional difference.

7. Use the sign test when the magnitude of differences isn't mean-
ingful or reliable, such as when data violate the assumptions of the
Wilcoxon test (e.g., non-symmetric distributions).

8. Null hypothesis: All groups come from the same population (i.e.,
have the same median ranks).
Alternative hypothesis: At least one group differs in its distribution
(i.e., in median ranks) from the others.

24.10 Practice Questions 2

A health psychologist is studying whether different relaxation tech-
niques affect self-reported anxiety levels. Each of 10 participants tries
three different methods on separate days:

1. Deep breathing
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2. Progressive muscle relaxation (PMR)
3. Mindfulness meditation

After each session, participants rate their anxiety level on a scale from
1 (no anxiety) to 10 (very anxious). The psychologist uses a Friedman
test to determine whether there are statistically significant differences
in anxiety ratings across the three techniques.

Participant Anxiety Ratings

Participant | Breathing [ PMR | Mindfulness
1 5 4 3
2 6 5 4
3 7 6 4
4 4 3 2
5 5 4 2
6 6 5 3
7 7 6 5
8 6 5 3
9 5 4 3
10 4 3 2

Use the data above to perform a Friedman test to determine whether
anxiety levels differ across the three relaxation techniques.

e Step 1: Rank the anxiety ratings within each participant

e Step 2: Sum the ranks for each technique

e Step 3: Use the Friedman formula or statistical software to calculate
the test statistic

e Step 4: Interpret the result

Step 1: Rank within each participant (lower anxiety = better)

Participant | Breathing| PMR Mindfulness| R_Breathe [ R_PMR| R_Mind
1 5 4 |3 3 2 1
2 6 5 |4 3 2 1
3 7 6 |4 3 2 1

411



Participant | Breathing| PMR Mindfulness| R_Breathe | R_PMR R_Mind
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Step 2: Sum ranks for each condition

* Breathing: 3 x 10 = 30
* PMR: 2 x 10 =20
e Mindfulness: 1 x 10 =10

Step 3: Friedman Test Formula
o= o > R?—3n(k+1)
E nk(k+1) J

12
- 10-3-4

(302 4202 +10%) —3-10- 4

12

12
= 4 100) — 120 = ——(1400) — 120 = 140 — 120 = 2
120(900 + 400 + 100) 0 120( 00) 0 0 0 0

Step 4: Conclusion

With x%(2) = 20.00, p < .001, the Friedman test is significant. Anxiety
levels significantly differed depending on the relaxation technique
used. Post hoc comparisons would likely show that mindfulness resulted
in lower anxiety ratings than either breathing or PMR.
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25 Concluding Remarks

The purpose of this chapter is to briefly review and consolidate some
of the knowledge and skills covered in this book. But first, | want to
congratulate you on getting this far. Research and statistics can feel in-
timidating—both before beginning and while in the midst of your analysis.
You have powered through the course (or just book), and that deserves
recognition of perseverance and courage. Great job!

25.1 Psychological Science

Becoming a scientist requires you to have a thorough understanding
of the scientific process and some key concepts relevant to psychology
and other fields. Here are some of my recommendations on becoming a
scientist. First, recall that sound science is the interweaving of inductive
and deductive methods, which allow scientists to generate ideas and
theories and then test them through well-designed research methods.
The cyclical nature of generating theories, deriving hypotheses, and con-
ducting research-which subsequently fine-tunes our theories—is believed
to make science progressive. My recommendation to budding scholars
is to become familiar with psychological theories of interest, as they will
be the foundation of your research.

Second, being a psychological scientist requires being aware of, ac-
knowledging, and working to remedy the major issues with current
psychological science culture and practice. For example, concerns with
reproducibility and lack of appreciation for replications are major con-
cerns in our science. Working to remedy these through open science
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or other ways to promote honesty and transparency in our research
methods is everyone's business.

Third, this book focuses solely on quantitative analyses. | have neglected
a major portion of research methods that draw on either qualitative
research or the blending of qualitative and quantitative research (i.e.,
mixed-methods designs). | may integrate qualitative methods into a later
edition, but for now, please refer to such introductory texts as Banister
et al. (2011) or Smith (2024).

In line with this, it is common for individuals to perceive qualitative
methods as inferior or less important than quantitative methods. For ex-
ample, the misconception that qualitative work is not valuable because
it's not generalizable exists (Povee & Roberts (2014)). | strongly recom-
mend you alter this mindset. Each research method has a time and place;
the research question and hypotheses determine the methods. Thus,
certain questions require a quantitative approach and others a qualita-
tive approach. Regardless, just because you encounter something less
often—qualitative research—does not mean it is not useful or important.
Unfortunately, this is the mindset of many psychological scientists. Avoid
this and expand your research toolbox as large as possible. Mixed-
methods research is valuable and informative.

Last, while your journey in this book is complete, | invite you to
approach psychological science as a lifelong learner. There are always
new concepts, analyses, or other concepts to learn, which can improve
the way you “science.” As such, keep an open mind to learn and try new
developments in research methods and statistics.

25.2 Avoiding Common Pitfalls

Here is a brief list of recommended practices to avoid common pitfalls
in psychological science:

1.Do not put too much weight in p-values. Understand what they mean
(n(DATA | Hy)) and don't mean (p(H, | DAT A)). Small p-values do not
necessarily mean large or relevant effects.
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2. Ensure you test all required assumptions of an analysis. The test
statistic distributions or use cases are built on assumptions. Violating the
assumptions means the statistics do not operate the way they should.
When violated, alter the approach or implement a recommended
change (e.g., use a non-parametric alternative).

3. Report effect sizes and confidence intervals. Effect sizes are more
informative than p-values. Including confidence intervals, in most cases,
can tell you just as much as a p-value. For example, reporting indicates
that the test was statistically significant for that alpha level (p < .05 for
95% C1). It also tells us that the most likely population effect is , but that
any value between and are plausible.

4. Use APA formatting. Although | often question some of APA's recom-
mendations on reporting and | typically adopt a more flexible approach,
be sure to at least LEARN APA formatting. Many institutions or academic
journals require this formatting.

5. When unsure, ask. You likely have resources, colleagues, supervisors,
or former professors who you can draw on to help you with your analyses.
Ask for help when you need it.

| would avoid using generative artificial intelligence (GAI) for your analy-
ses right now. | have performed some preliminary testing and sometimes
questioned GAl’s approach, which sometimes returns results that are
incorrect. | hope to publish some results in this area in the future. Instead,
use the connections you have built over your degree.

25.3 Final Thoughts

This book was a lot of work. I'm tired.
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